Underwater online dynamic strain test of CFRP propeller with embedded FBG sensors
-
摘要:
目的 碳纤维复合材料(CFRP)螺旋桨具有轻质高强、低振动、低噪音、耐腐蚀、抗疲劳等优势。为了准确获知CFRP螺旋桨桨叶在水动力载荷下的变形和应变,提出一种水下运转状态下CFRP螺旋桨动应变在线测试方法。 方法 将光纤光栅(FBG)传感器预埋于CFRP螺旋桨,搭建CFRP螺旋桨水下动应变测试系统,设置2类测试工况:进速为0 m/s,转速从50~400 r/min依次增加;转速保持427 r/min不变,进速从0~1.6 m/s依次增加。通过FBG传感器采集上述2类工况下CFRP螺旋桨的动应变数据,对动应变数据进行时域和频谱分析。 结果 结果表明,CFRP螺旋桨上各测点的动应变特征频率一致,且与转速相关;各测点的动应变峰值取决于测点位置,即螺旋桨的结构力学特征。 结论 实现了CFRP螺旋桨在水下运转状态下的动应变在线测试,测试结果合理可靠,可为CFRP螺旋桨的理论设计和分析提供重要的实证依据,对研究螺旋桨振动噪声和水动力性能具有重要意义。 -
关键词:
- 预埋光纤光栅传感器 /
- 碳纤维复合材料螺旋桨 /
- 动应变 /
- 水下在线测试
Abstract:Objective The carbon fiber reinforced plastic (CFRP) propeller has such advantages as light weight, high strength, low vibration, low noise, corrosion resistance and fatigue resistance. In order to accurately ascertain the deformation and strain of CFRP propeller blades under hydrodynamic load, this paper proposes an online measurement method for CFRP propeller dynamic strain under submerged operation conditions. Method Fiber bragg grating (FBG) sensors are embedded in a CFRP propeller, and an underwater dynamic strain test system is built. Two types of test conditions are set: (1) the velocity is 0 m/s, and the rotation speed increases from 50 to 400 r/min; and (2) the rotation speed is 427 r/min, and the velocity increases from 0.0 to 1.6 m/s. The dynamic strain data of the CFRP propeller under the above conditions is obtained by the FBG sensors and analyzed in the time and spectrum domains. Results The results show that, the dynamic strain frequencies of each FBG sensor on the CFRP propeller are the same and related to the rotation speed, while the dynamic strain amplitude of each FBG sensor has no obvious relationship with the rotation speed or velocity, but depends on the position of the sensor, which reflects the structural mechanics features of the propeller. Conclusion The underwater online dynamic strain test of the CFRP propeller is realized, and test results are reasonable and reliable. This provides an important empirical basis for the theoretical design and analysis of the CFRP propeller, which is of great significance for the study of its vibration noise and hydrodynamic performance. -
表 1 CFRP螺旋桨主要参数
Table 1. Main parameters of CFRP propeller
名称 数值 桨直径/ mm 240 桨叶数 /片 5 毂径比 0.175 盘面比 0.8 桨叶侧斜角/(°) 24.50 桨叶总纵倾角/(°) 8 表 2 不同转速下CFRP螺旋桨应变特征频率与峰值
Table 2. Frequency and amplitude of strain with different speeds
r/(r·min−1) APF/Hz 应变特征频率/Hz 应变峰值/10−6 FBG2-1 FBG2-2 FBG2-3 FBG2-1 FBG2-2 FBG2-3 50 0.833 1.636 1.636 1.636 9.450 17.170 7.011 100 1.667 3.339 3.339 3.339 9.121 16.046 6.564 150 2.500 4.968 4.968 4.968 10.096 17.974 7.205 200 3.333 6.645 6.645 6.645 9.063 15.140 6.557 250 4.167 8.333 8.333 8.333 8.823 14.213 6.367 300 5.000 10.05 10.05 10.05 10.196 17.080 7.962 350 5.833 11.66 11.66 11.66 10.084 17.067 7.833 400 6.667 13.33 13.33 13.33 7.206 14.018 7.104 表 3 不同进速下CFRP螺旋桨应变特征频率与峰值
Table 3. Frequencies and amplitude of strain with different velocities
v/(m·s−1) 应变特征频率/Hz 应变峰值/10−6 FBG2-1 FBG2-2 FBG2-3 FBG2-1 FBG2-2 FBG2-3 0.0 14.2 14.2 14.2 7.124 12.93 6.734 0.2 14.2 14.2 14.2 8.513 12.52 6.822 0.4 14.2 14.2 14.2 8.485 13.50 6.736 0.6 14.2 14.2 14.2 8.218 12.66 6.669 0.8 14.2 14.2 14.2 7.856 13.74 6.811 1.0 14.2 14.2 14.2 7.794 13.06 6.595 1.2 14.2 14.2 14.2 8.752 13.14 6.585 1.4 14.2 14.2 14.2 8.56 13.17 6.760 1.6 14.2 14.2 14.2 7.841 12.05 6.835 -
[1] 洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化[D]. 哈尔滨: 哈尔滨工业大学, 2011.HONG Y. Structure design and hydroelastic optimization of high performance composite propeller[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese). [2] 骆海民, 洪毅, 魏康军, 等. 复合材料螺旋桨的应用、研究及发展[J]. 纤维复合材料, 2012(1): 3–6. doi: 10.3969/j.issn.1003-6423.2012.01.001LUO H M, HONG Y, WEI K J, et al. The application and study and development of composite propeller[J]. Fiber Composites, 2012(1): 3–6 (in Chinese). doi: 10.3969/j.issn.1003-6423.2012.01.001 [3] 张帅, 朱锡, 孙海涛, 等. 船用复合材料螺旋桨研究进展[J]. 力学进展, 2012, 42(5): 620–633. doi: 10.6052/1000-0992-11-147ZHANG S, ZHU X, SUN H T, et al. Review of researches on composite marine ropellers[J]. Advances in Mechanics, 2012, 42(5): 620–633 (in Chinese). doi: 10.6052/1000-0992-11-147 [4] 张旭婷, 洪毅, 袁凤, 等. 复合材料螺旋桨流固耦合分析方法的发展和研究现状[J]. 玻璃钢/复合材料, 2016(6): 84–87.ZHANG X T, HONG Y, YUAN F, et al. The development and research of fluid-structure interaction for composite propeller[J]. Fiber Reinforced Plastics/Composites, 2016(6): 84–87 (in Chinese). [5] 黄政, 熊鹰, 杨光. 复合材料螺旋桨模型的应变模态与振动特性[J]. 中国舰船研究, 2016, 11(2): 98–105. doi: 10.3969/j.issn.1673-3185.2016.02.013HUANG Z, XIONG Y, YANG G. Composite propeller's strain modal and structural vibration performance[J]. Chinese Journal of Ship Research, 2016, 11(2): 98–105 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.02.013 [6] 闫美佳. 基于光纤光栅的结构变形监测方法研究[D]. 南京: 南京航空航天大学, 2015.YAN M J. Research on structural deformation monitoring method based on fiber bragg grating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). [7] ZETTERLIND III V E, WATKINS S E, SPOLTMAN M W. Feasibility study of embedded fiber optic strain sensing for composite propeller blades[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. Newport Beach, CA, United States: SPIE, 2001, 4332: 143-152. [8] ZETTERLIND V E, WATKINS S E, SPOLTMAN M W. Fatigue testing of a composite propeller blade using fiber-optic strain sensors[J]. IEEE Sensors Journal, 2003, 3(4): 393–399. doi: 10.1109/JSEN.2003.815795 [9] WOZNIAK C D. Analysis, fabrication, and testing of a composite bladed propeller for a naval academy yard patrol (YP) craft[R]. Annapolis: Naval Academy, 2005. [10] HERATH M T, PRUSTY B G, YEOH G H, et al. Development of a shape-adaptive composite propeller using bend-twist coupling characteristics of composites[C]//Proceedings of the Third International Symposium on Marine Propulsors. Tasmania, Australia: ISMP, 2013: 128−135. [11] JAVDANI S, FABIAN M, AMS M, et al. Fiber bragg grating-based system for 2-D analysis of vibrational modes of a steel propeller blade[J]. Journal of Lightwave Technology, 2014, 32(23): 3991–3997. [12] JAVDANI S, FABIAN M, CARLTON J S, et al. Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system[J]. IEEE Sensors Journal, 2016, 16(4): 946–953. doi: 10.1109/JSEN.2015.2490478 -
ZG2323_en.pdf
-