Wide-area ship target recognition method based on motion and appearance features
-
摘要:
目的 旨在提出对航行于关键广阔水域内的船舶进行准确识别和定位的改进方法。 方法 运用视频监控的优点,综合采用基于背景差分算法的运动目标检测方法与基于深度学习算法的图像表象特征识别方法,结合目标的运动特征和图像表象特征,实现多维度广域船舶识别的功能,并对水纹降噪、多级运动检测、航道监控图像窗口分割检测等方法进行改进,进一步提高航行监控系统的船舶识别准确率。 结果 现场航道监控验证结果表明,采用所提改进方法可以准确识别航道监控画面中任意类型和尺度的船舶,且使用常规摄像头即可实现半径3 km范围内的船舶识别、定位效果。 结论 所提方法具有监控范围广、船舶类型全覆盖、自动目标识别、抗干扰能力强等优点。 Abstract:Objective The aim of this paper is to proposes methods for better recognizing and positioning ships sailing in critical and wide-area waterways during monitoring operation. Methods Based on video surveillance technology, the joint use of the motion and appearance features of ship target is carried out to realize a wide-area multi-dimensional recognition function via the combination of background subtraction based moving object detection algorithm and deep learning based target recognition algorithm. In addition, the improved approaches including water ripple noise reduction, hierarchical moving object detection and window segmentation of waterway monitoring image are put forward to further improve recognition accuracy. Results The field demonstration results show that the improved methods proposed in this paper allow the accurate recognition of a ship of any type or size on the monitoring screen, and the use of conventional cameras can also achieve the recognition and position of a ship navigating a water area within a radius of 3 km. Conclusions The improved methods proposed in this study have a range of advantages including wide-area monitoring, complete coverage of ship types and sizes, automatic target recognition and robust anti-interference ability. -
表 1 船舶目标识别原算法与其改进方法检测效果对比
Table 1. Effect comparison of ship target recognition by original and improved algorithms
方法 识别
准确率/%识别
召回率/%最远识别
距离/km能否识别
类型背景差分算法 <0.01 97.8 3 否 YOLO检测算法 95.1 54.7 0.2 能 基于水纹滤波和多级检测
的背景差分目标识别68.4 98.4 3 否 基于窗口分割的
YOLO目标识别97.2 68.5 0.4 能 基于改进窗口分割和
YOLO目标识别97.2 98.4 3 能 -
[1] 吴飞, 李志特. 新时期中国内河航运发展问题分析[J]. 珠江水运, 2020(15): 87–88.WU F, LI Z T. Analysis of China's inland waterway development in the New Era[J]. Pearl River Water Transport, 2020(15): 87–88 (in Chinese). [2] 罗本成, 张姝慧. 新形势新要求驱动内河航运发展步入“快车道”[N]. 中国水运报, 2020-08-17(002).LUO B C, ZHANG S H. The new situation and new requirements drive the development of inland waterway into the "fast lane"[N]. China Water Transport News, 2020-08-17(002) (in Chinese). [3] 许正路. 5米以下游船水上旅游活动安全监管研究[J]. 中国海事, 2014(9): 49–52. doi: 10.3969/j.issn.1673-2278.2014.09.021XU Z L. Research on the water sightseeing safety supervision of sightseeing boat below 5 meters in scenic spots[J]. China Maritime Safety, 2014(9): 49–52 (in Chinese). doi: 10.3969/j.issn.1673-2278.2014.09.021 [4] 李峰, 易宏. 无人水面艇在水上交通安全监管中的应用[J]. 中国舰船研究, 2018, 13(6): 27–33.LI F, YI H. Application of USV to maritime safety supervision[J]. Chinese Journal of Ship Research, 2018, 13(6): 27–33 (in Chinese). [5] 严新平, 王树武, 马枫. 智能货运船舶研究现状与发展思考[J]. 中国舰船研究, 2021, 16(1): 1–6.YAN X P, WANG S W, MA F. Review and prospect for intelligent cargo ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 1–6 (in Chinese). [6] 杨英. 基于视频图像的船舶流量检测方法研究[D]. 武汉: 武汉理工大学, 2019.YANG Y. Research on ship flow detection method based on video image[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [7] XU C, YIN C J, WANG D Z, et al. Fast ship detection combining visual saliency and a cascade CNN in SAR images[J]. IET Radar, Sonar & Navigation, 2020, 14(12): 1879–1887. [8] CORDOVA A W A, QUISPE W C, INCA R J C, et al. New approaches and tools for ship detection in optical satellite imagery[J]. Journal of Physics, Conference Series, 2020, 1642(1): 012003. [9] CAO C Q, WU J, ZENG X D, et al. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network[J]. Sensors, 2020, 20(17): 4696. doi: 10.3390/s20174696 [10] 马吉顺, 吴天明, 韩鹏, 等. 基于YOLO 检测算法的船舶识别定位系统[J]. 新型工业化, 2019, 9(9): 33–37.MA J S, WU T M, HAN P, et al. Ship identification and positioning system based on YOLO algorithm[J]. The Journal of New Industrialization, 2019, 9(9): 33–37 (in Chinese). [11] 高岚. 基于视频的多运动目标检测算法研究[D]. 沈阳: 沈阳理工大学, 2008.GAO L. Research on multiple moving objects detection algorithm based on the video[D]. Shenyang: Shenyang Ligong University, 2008 (in Chinese). [12] 乐英, 赵志成. 基于背景差分法的多运动目标检测与分割[J]. 中国工程机械学报, 2020, 18(4): 305–309.LE Y, ZHAO Z C. Multi-moving object detection and segmentation based on background difference method[J]. Chinese Journal of Construction Machinery, 2020, 18(4): 305–309 (in Chinese). [13] 魏俊杰. 水岸图像的中值滤波和分割算法的研究及实现[D]. 长春: 吉林大学, 2011.WEI J J. On study and realization of median filtering and segmentation algorithm of waterfront images[D]. Changchun: Jilin University, 2011 (in Chinese). [14] 李冬琴, 王丽铮, 王呈方. 支持向量机回归方法在船型要素建模中的应用[J]. 中国舰船研究, 2007, 2(3): 18–21,39. doi: 10.3969/j.issn.1673-3185.2007.03.004LI D Q, WANG L Z, WANG C F. Method of support vector regression in modeling ship principal particulars [J]. Chinese Journal of Ship Research, 2007, 2(3): 18 –21,39 (in Chinese). doi: 10.3969/j.issn.1673-3185.2007.03.004 [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 779-788. [16] LU S Y, LIU J H, WANG B Z, et al. A novel object detection algorithm in video[C]//Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering (WCSE 2019). Hong Kong, China:Science and Engineering Institute (SCIEI), 2019:8. -