留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自主式水下航行器水下回收融合引导技术方案及算法

赵蕊 许建

赵蕊, 许建. 自主式水下航行器水下回收融合引导技术方案及算法[J]. 中国舰船研究, 2022, 17(1): 212–220 doi: 10.19693/j.issn.1673-3185.02318
引用本文: 赵蕊, 许建. 自主式水下航行器水下回收融合引导技术方案及算法[J]. 中国舰船研究, 2022, 17(1): 212–220 doi: 10.19693/j.issn.1673-3185.02318
ZHAO R, XU J. Fusion guiding technology solution and algorithm for underwater docking of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(1): 212–220 doi: 10.19693/j.issn.1673-3185.02318
Citation: ZHAO R, XU J. Fusion guiding technology solution and algorithm for underwater docking of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(1): 212–220 doi: 10.19693/j.issn.1673-3185.02318

自主式水下航行器水下回收融合引导技术方案及算法

doi: 10.19693/j.issn.1673-3185.02318
详细信息
    作者简介:

    赵蕊,女,1981年生,硕士,高级工程师

    许建,男,1963年生,博士,研究员,博士生导师

    通信作者:

    赵蕊

  • 中图分类号: U664.82

Fusion guiding technology solution and algorithm for underwater docking of autonomous underwater vehicles

知识共享许可协议
自主式水下航行器水下回收融合引导技术方案及算法赵蕊,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为解决母艇携载的自主式水下航行器(AUV)在水下自主回收和对接的问题,基于惯导(INS)、声学超短基线定位(USBL)、光学等信号引导的多源数据融合,提出一种面向移动平台的AUV水下回收对接引导方法。  方法  为此,设计融合多传感器信息的扩展联邦卡尔曼滤波器,采用分散滤波并再经信息融合方法以提高滤波精度。分别以INS和USBL及光学探测信号作为子滤波器的输入信息,结合AUV水下回收对接过程中的5个阶段分别建立运动方程,最终得到适用于移动平台搭载的AUV水下对接引导系统的多源数据融合导航算法。  结果  仿真结果表明,所提方法具有可行性、系统鲁棒性和控制精度,  结论  可满足母艇水下回收作业对接的工程要求,以及作为AUV水下自主回收操作的技术参考。
  • 图  AUV回收作业对接引导的全过程

    Figure  1.  Whole process of guiding AUV docking in recovery operation

    图  AUV与移动目标实现对接的系统总体框架

    Figure  2.  General framework of implementation for AUV docking system with mobile platform

    图  多速率联邦扩展卡尔曼滤波器总体框架

    Figure  3.  General framework of federate extended Kalman filter with multi-rates

    图  多速率联邦扩展卡尔曼滤波数据处理流程

    Figure  4.  Data processing flow of federate extended Kalman filter with multi-rates

    图  导航坐标系和载体坐标系定义

    Figure  5.  Definitions of navigation and body coordinate system

    图  AUV回收对接的3种航行轨迹

    Figure  6.  Three trajectories of AUV docking in recovery operation

    图  AUV回收对接在不同轨迹下滤波估计的相对位置与真实值对比

    Figure  7.  Comparison of filter estimated relative position and true value for different trajectories of AUV docking in recovery operation

  • [1] 封锡盛. 从有缆遥控水下机器人到自治水下机器人[J]. 中国工程科学, 2000, 2(12): 29–33,58. doi: 10.3969/j.issn.1009-1742.2000.12.005

    FENG X S. From remotely operated vehicles to autonomous undersea vehicles[J]. Engineering Science, 2000, 2(12): 29–33,58 (in Chinese). doi: 10.3969/j.issn.1009-1742.2000.12.005
    [2] LEE P M, JEON B H, KIM S M. Visual servoing for underwater docking of an autonomous underwater vehicle with one camera[C]//Oceans 2003. Celebrating the Past. Teaming Toward the Future (IEEE Cat. No. 03CH37492). San Diego, CA, USA: IEEE, 2003, 2: 677-682.
    [3] 赵蕊, 许建, 王淼, 等. 基于遗传算法和分数阶技术的水下机器人航向控制[J]. 中国舰船研究, 2018, 13(6): 87–93. doi: 10.19693/j.issn.1673-3185.01185

    ZHAO R, XU J, WANG M, et al. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87–93 (in Chinese). doi: 10.19693/j.issn.1673-3185.01185
    [4] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1–11.

    SUN Y Y, WU H W, LI Y, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1–11 (in Chinese).
    [5] WIRTZ M, HILDEBRANDT M, GAUDIG C. Design and test of a robust docking system for hovering AUVs[C]//2012 Oceans. Hampton Roads, VA, USA: IEEE, 2012.
    [6] KAWASAKI T, FUKASAWA T, NOGUCHI T, et al. Development of AUV “Marine Bird” with underwater docking and recharging system[C]//2003 International Conference Physics and Control. Proceedings (Cat. No. 03EX708). Tokyo, Japan: IEEE, 2003: 166-170.
    [7] SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 489–514.
    [8] 郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182

    ZHENG R, SONG T, SUN Q G, et al. Review on underwater docking technology of AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 43–49,65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01182
    [9] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007, 29(3): 267–273. doi: 10.3321/j.issn:1002-0446.2007.03.014

    YAN K C, WU L H. A survey on the key technologies for underwater AUV docking[J]. Robot, 2007, 29(3): 267–273 (in Chinese). doi: 10.3321/j.issn:1002-0446.2007.03.014
    [10] 闫鹏. 水下机器人回收对接水动力仿真[D]. 大连: 大连海事大学, 2013.

    YAN P. Hydrodynamic simulation of autonomous underwater vehicle in docking reclaim [D]. Dalian: Dalian Maritime University, 2013 (in Chinese).
    [11] SATO Y, MAKI T, MATSUDA T, et al. Detailed 3D seafloor imaging of Kagoshima bay by AUV Tri-TON2[C]//2015 IEEE Underwater Technology (UT). Chennai, India: IEEE, 2015: 1-6.
    [12] 张波. 自治式水下机器人水下对接装置研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.

    ZHANG B. Research on AUV underwater docking device[D]. Harbin: Harbin Engineering University, 2013 (in Chinese).
    [13] SATO Y, MAKI T, MASUDA K, et al. Autonomous docking of hovering type AUV to seafloor charging station based on acoustic and visual sensing[C]//2017 Underwater Technology (UT). Busan, Korea (South): IEEE, 2017: 1-6.
    [14] 赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028

    ZHAO R, XU J, XIANG X B, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01028
    [15] JUN B H, PARK J Y, LEE F Y, et al. Development of the AUV ‘ISiMI’ and a free running test in an ocean engineering basin[J]. Ocean Engineering, 2009, 36(1): 2–14. doi: 10.1016/j.oceaneng.2008.07.009
    [16] PARK J Y, JUN B H, LEE P M, et al. Experiments on vision guided docking of an autonomous underwater vehicle using one camera[J]. Ocean Engineering, 2009, 36(1): 48–61. doi: 10.1016/j.oceaneng.2008.10.001
    [17] PARK J Y, JUN B H, LEE P M, et al. Modified linear terminal guidance for docking and a time-varying ocean current observer[C]//2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo, Japan: IEEE, 2011: 1-6.
    [18] WU L H, LI Y P, SU S J, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85: 110–126. doi: 10.1016/j.oceaneng.2014.04.022
    [19] 刘准, 陈哲. INS/GPS/TRCOM组合制导系统中的信息融合方法研究[J]. 宇航学报, 2001, 22(3): 26–32. doi: 10.3321/j.issn:1000-1328.2001.03.006

    LIU Z, CHEN Z. Research on information fusion method in INS/GPS/TRCOM system[J]. Journal of Astronautics, 2001, 22(3): 26–32 (in Chinese). doi: 10.3321/j.issn:1000-1328.2001.03.006
    [20] 卢海曦, 周百令. 自适应联邦滤波器及其在组合导航系统中的应用[J]. 中国惯性技术学报, 2007, 15(6): 678–681. doi: 10.3969/j.issn.1005-6734.2007.06.010

    LU H X, ZHOU B L. Self-adaptive federated filter and its application in integrated navigation system[J]. Journal of Chinese Inertial Technology, 2007, 15(6): 678–681 (in Chinese). doi: 10.3969/j.issn.1005-6734.2007.06.010
    [21] 邱恺, 吴训忠, 张宗麟, 等. 联邦滤波器容错信息分配方法研究[J]. 控制与决策, 2006, 21(3): 343–346,360. doi: 10.3321/j.issn:1001-0920.2006.03.024

    QIU K, WU X Z, ZHANG Z L, et al. On fault-tolerant information sharing scheme for federated filters[J]. Control and Decision, 2006, 21(3): 343–346,360 (in Chinese). doi: 10.3321/j.issn:1001-0920.2006.03.024
    [22] 胡志强, 张英, 邱恺. 基于故障概率的联邦滤波鲁棒信息分配方法[J]. 系统工程与电子技术, 2008, 30(9): 1801–1804. doi: 10.3321/j.issn:1001-506X.2008.09.048

    HU Z Q, ZHANG Y, QIU K. Robust information sharing scheme for federated filter based on fault probability[J]. Systems Engineering and Electronics, 2008, 30(9): 1801–1804 (in Chinese). doi: 10.3321/j.issn:1001-506X.2008.09.048
    [23] FELTER S C, WU N E. A relative navigation system for formation flight[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 958–967. doi: 10.1109/7.599319
    [24] 陈天如, 邱恺, 潘泉. 无反馈最优联邦信息滤波算法研究[J]. 传感技术学报, 2007, 20(5): 1064-1067.

    CHEN T R, QIU K, PAN Q. Optimal information sharing algorithm for the federated information filter without feedback [J]. Chinese Journal of Sensors and Actuators, 2007, 20(5): 1064-1067 (in Chinese).
    [25] 李金梁, 吴训忠, 张宗麟. 基于矩阵摄动理论的联邦滤波信息分配方法[J]. 系统工程与电子技术, 2007, 29(11): 1940-1944.

    LI J L, WU X Z, ZHANG Z L. Information-sharing approach to federated filtering based on matrix perturbation theory [J]. Systems Engineering and Electronics, 2007, 29(11): 1940-1944 (in Chinese).
    [26] 陈兵舫, 张育林, 赵华丽. INS/GPS/Odometer组合系统初始对准及自适应联合滤波[J]. 宇航学报, 2001, 22(6): 57–63,83. doi: 10.3321/j.issn:1000-1328.2001.06.009

    CHEN B F, ZHANG Y L, ZHAO L H. Initial alignment of INS/GPS/Odometer integrated system and adaptive federated Kalman filter[J]. Journal of Astronautics, 2001, 22(6): 57–63,83 (in Chinese). doi: 10.3321/j.issn:1000-1328.2001.06.009
    [27] 李丹, 刘建业, 熊智, 等. 应用联邦自适应UKF的卫星多传感器数据融合[J]. 应用科学学报, 2009, 27(4): 359–364. doi: 10.3969/j.issn.0255-8297.2009.04.006

    LI D, LIU J Y, XIONG Z, et al. Multi-sensor data fusion for satellite based on federate adaptive unscented Kalman filter[J]. Journal of Applied Sciences, 2009, 27(4): 359–364 (in Chinese). doi: 10.3969/j.issn.0255-8297.2009.04.006
    [28] 赖际舟, 周翟和, 刘建业, 等. 混合粒子联邦滤波在多信息组合导航系统中的应用[J]. 中国惯性技术学报, 2011, 19(1): 59–63.

    LAI J Z, ZHOU Z H, LIU J Y, et al. Mixture particle federated filter and its application in multi-sensor integrated navigation system[J]. Journal of Chinese Inertial Technology, 2011, 19(1): 59–63 (in Chinese).
    [29] 张梦辉. 基于机器视觉的自主式水下航行器末端导引系统关键技术研究[D]. 杭州: 浙江大学, 2018.

    ZHANG M H. Research on key technologies of machine vision-based AUV terminal guidance system [D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
  • ZG2318_en.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  295
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-04-02
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回