[1] |
封锡盛. 从有缆遥控水下机器人到自治水下机器人[J]. 中国工程科学, 2000, 2(12): 29–33,58. doi: 10.3969/j.issn.1009-1742.2000.12.005FENG X S. From remotely operated vehicles to autonomous undersea vehicles[J]. Engineering Science, 2000, 2(12): 29–33,58 (in Chinese). doi: 10.3969/j.issn.1009-1742.2000.12.005
|
[2] |
LEE P M, JEON B H, KIM S M. Visual servoing for underwater docking of an autonomous underwater vehicle with one camera[C]//Oceans 2003. Celebrating the Past. Teaming Toward the Future (IEEE Cat. No. 03CH37492). San Diego, CA, USA: IEEE, 2003, 2: 677-682.
|
[3] |
赵蕊, 许建, 王淼, 等. 基于遗传算法和分数阶技术的水下机器人航向控制[J]. 中国舰船研究, 2018, 13(6): 87–93. doi: 10.19693/j.issn.1673-3185.01185ZHAO R, XU J, WANG M, et al. Heading control of AUV based on GA and fractional order technology[J]. Chinese Journal of Ship Research, 2018, 13(6): 87–93 (in Chinese). doi: 10.19693/j.issn.1673-3185.01185
|
[4] |
孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1–11.SUN Y Y, WU H W, LI Y, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1–11 (in Chinese).
|
[5] |
WIRTZ M, HILDEBRANDT M, GAUDIG C. Design and test of a robust docking system for hovering AUVs[C]//2012 Oceans. Hampton Roads, VA, USA: IEEE, 2012.
|
[6] |
KAWASAKI T, FUKASAWA T, NOGUCHI T, et al. Development of AUV “Marine Bird” with underwater docking and recharging system[C]//2003 International Conference Physics and Control. Proceedings (Cat. No. 03EX708). Tokyo, Japan: IEEE, 2003: 166-170.
|
[7] |
SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 489–514.
|
[8] |
郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182ZHENG R, SONG T, SUN Q G, et al. Review on underwater docking technology of AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 43–49,65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01182
|
[9] |
燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007, 29(3): 267–273. doi: 10.3321/j.issn:1002-0446.2007.03.014YAN K C, WU L H. A survey on the key technologies for underwater AUV docking[J]. Robot, 2007, 29(3): 267–273 (in Chinese). doi: 10.3321/j.issn:1002-0446.2007.03.014
|
[10] |
闫鹏. 水下机器人回收对接水动力仿真[D]. 大连: 大连海事大学, 2013.YAN P. Hydrodynamic simulation of autonomous underwater vehicle in docking reclaim [D]. Dalian: Dalian Maritime University, 2013 (in Chinese).
|
[11] |
SATO Y, MAKI T, MATSUDA T, et al. Detailed 3D seafloor imaging of Kagoshima bay by AUV Tri-TON2[C]//2015 IEEE Underwater Technology (UT). Chennai, India: IEEE, 2015: 1-6.
|
[12] |
张波. 自治式水下机器人水下对接装置研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.ZHANG B. Research on AUV underwater docking device[D]. Harbin: Harbin Engineering University, 2013 (in Chinese).
|
[13] |
SATO Y, MAKI T, MASUDA K, et al. Autonomous docking of hovering type AUV to seafloor charging station based on acoustic and visual sensing[C]//2017 Underwater Technology (UT). Busan, Korea (South): IEEE, 2017: 1-6.
|
[14] |
赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028ZHAO R, XU J, XIANG X B, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01028
|
[15] |
JUN B H, PARK J Y, LEE F Y, et al. Development of the AUV ‘ISiMI’ and a free running test in an ocean engineering basin[J]. Ocean Engineering, 2009, 36(1): 2–14. doi: 10.1016/j.oceaneng.2008.07.009
|
[16] |
PARK J Y, JUN B H, LEE P M, et al. Experiments on vision guided docking of an autonomous underwater vehicle using one camera[J]. Ocean Engineering, 2009, 36(1): 48–61. doi: 10.1016/j.oceaneng.2008.10.001
|
[17] |
PARK J Y, JUN B H, LEE P M, et al. Modified linear terminal guidance for docking and a time-varying ocean current observer[C]//2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo, Japan: IEEE, 2011: 1-6.
|
[18] |
WU L H, LI Y P, SU S J, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85: 110–126. doi: 10.1016/j.oceaneng.2014.04.022
|
[19] |
刘准, 陈哲. INS/GPS/TRCOM组合制导系统中的信息融合方法研究[J]. 宇航学报, 2001, 22(3): 26–32. doi: 10.3321/j.issn:1000-1328.2001.03.006LIU Z, CHEN Z. Research on information fusion method in INS/GPS/TRCOM system[J]. Journal of Astronautics, 2001, 22(3): 26–32 (in Chinese). doi: 10.3321/j.issn:1000-1328.2001.03.006
|
[20] |
卢海曦, 周百令. 自适应联邦滤波器及其在组合导航系统中的应用[J]. 中国惯性技术学报, 2007, 15(6): 678–681. doi: 10.3969/j.issn.1005-6734.2007.06.010LU H X, ZHOU B L. Self-adaptive federated filter and its application in integrated navigation system[J]. Journal of Chinese Inertial Technology, 2007, 15(6): 678–681 (in Chinese). doi: 10.3969/j.issn.1005-6734.2007.06.010
|
[21] |
邱恺, 吴训忠, 张宗麟, 等. 联邦滤波器容错信息分配方法研究[J]. 控制与决策, 2006, 21(3): 343–346,360. doi: 10.3321/j.issn:1001-0920.2006.03.024QIU K, WU X Z, ZHANG Z L, et al. On fault-tolerant information sharing scheme for federated filters[J]. Control and Decision, 2006, 21(3): 343–346,360 (in Chinese). doi: 10.3321/j.issn:1001-0920.2006.03.024
|
[22] |
胡志强, 张英, 邱恺. 基于故障概率的联邦滤波鲁棒信息分配方法[J]. 系统工程与电子技术, 2008, 30(9): 1801–1804. doi: 10.3321/j.issn:1001-506X.2008.09.048HU Z Q, ZHANG Y, QIU K. Robust information sharing scheme for federated filter based on fault probability[J]. Systems Engineering and Electronics, 2008, 30(9): 1801–1804 (in Chinese). doi: 10.3321/j.issn:1001-506X.2008.09.048
|
[23] |
FELTER S C, WU N E. A relative navigation system for formation flight[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 958–967. doi: 10.1109/7.599319
|
[24] |
陈天如, 邱恺, 潘泉. 无反馈最优联邦信息滤波算法研究[J]. 传感技术学报, 2007, 20(5): 1064-1067.CHEN T R, QIU K, PAN Q. Optimal information sharing algorithm for the federated information filter without feedback [J]. Chinese Journal of Sensors and Actuators, 2007, 20(5): 1064-1067 (in Chinese).
|
[25] |
李金梁, 吴训忠, 张宗麟. 基于矩阵摄动理论的联邦滤波信息分配方法[J]. 系统工程与电子技术, 2007, 29(11): 1940-1944.LI J L, WU X Z, ZHANG Z L. Information-sharing approach to federated filtering based on matrix perturbation theory [J]. Systems Engineering and Electronics, 2007, 29(11): 1940-1944 (in Chinese).
|
[26] |
陈兵舫, 张育林, 赵华丽. INS/GPS/Odometer组合系统初始对准及自适应联合滤波[J]. 宇航学报, 2001, 22(6): 57–63,83. doi: 10.3321/j.issn:1000-1328.2001.06.009CHEN B F, ZHANG Y L, ZHAO L H. Initial alignment of INS/GPS/Odometer integrated system and adaptive federated Kalman filter[J]. Journal of Astronautics, 2001, 22(6): 57–63,83 (in Chinese). doi: 10.3321/j.issn:1000-1328.2001.06.009
|
[27] |
李丹, 刘建业, 熊智, 等. 应用联邦自适应UKF的卫星多传感器数据融合[J]. 应用科学学报, 2009, 27(4): 359–364. doi: 10.3969/j.issn.0255-8297.2009.04.006LI D, LIU J Y, XIONG Z, et al. Multi-sensor data fusion for satellite based on federate adaptive unscented Kalman filter[J]. Journal of Applied Sciences, 2009, 27(4): 359–364 (in Chinese). doi: 10.3969/j.issn.0255-8297.2009.04.006
|
[28] |
赖际舟, 周翟和, 刘建业, 等. 混合粒子联邦滤波在多信息组合导航系统中的应用[J]. 中国惯性技术学报, 2011, 19(1): 59–63.LAI J Z, ZHOU Z H, LIU J Y, et al. Mixture particle federated filter and its application in multi-sensor integrated navigation system[J]. Journal of Chinese Inertial Technology, 2011, 19(1): 59–63 (in Chinese).
|
[29] |
张梦辉. 基于机器视觉的自主式水下航行器末端导引系统关键技术研究[D]. 杭州: 浙江大学, 2018.ZHANG M H. Research on key technologies of machine vision-based AUV terminal guidance system [D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
|