Ship power risk assessment system based on proportional pseudo time-series algorithm
-
摘要:
目的 为了提高舰船电力系统的安全性与稳定性,提出基于比例伪时序算法的风险评估系统。 方法 在舰船电力系统中引入改进的伪时序算法,对电压、功率和频率等电力模拟量进行赋值,并通过组态界面进行可视化监控,进而对舰船电力系统进行整体风险评估。同时,针对不同工况下的系统拓扑结构变化问题,通过引入比例补偿系数来调整算法,从而提高风险等级评估的精确度。 结果 实机测试结果表明,该系统不仅可以实时监控电力物理量,还可以准确评估系统的风险状态和风险水平。 结论 研究成果可为舰船电力风险评估系统设计提供参考。 Abstract:Objectives In order to improve the safety and stability of a ship's power system, a risk assessment system based on a proportional pseudo time-series algorithm is proposed. Methods An improved pseudo time-series algorithm is introduced into the ship's power system to assign values to power analog quantities such as voltage, power and frequency, which can be visually monitored through the configuration interface; the risk assessment of the overall power system is then conducted. At the same time, in response to changes in system topology under different working conditions, the algorithm is adjusted by introducing proportional compensation coefficients to improve the accuracy of risk level assessment. Results The actual test results show that this system can not only monitor the physical quantities of electric power in real time, but also accurately assess the risk status and level of the system. Conclusions The results of this study can provide references for the design of ship electric power risk assessment systems. -
表 1 伪时序算法的对比分析
Table 1. Comparative analysis of pseudo time-series algorithms
算法名称 特点 传统伪时序算法 反映电力系统状态变化的时序特点,筛选出某一状态变化过程的状态量,根据所需要的状态量建立集合 改进伪时序算法 在伪时序算法的基础上,优化了状态选取过程,忽略了低重要度的状态变化,从而提高算法效率 表 2 比例补偿系数
Table 2. Proportional compensation coefficient
参数补偿系数 6台电机 5台电机 4台电机 3台电机 2台电机 1台电机 电压/V 1 0.117 6 0.17 0.081 0.013 7 0.064 0 功率/kW 1 0.15 0.209 0.103 0.031 5 0.110 9 频率/Hz 1 0.225 7 0.365 2 0.213 0.075 9 0.129 8 -
[1] 黄巧亮, 刘国海, 刘维亭. 船舶复杂配电网络结构可靠性评估[J]. 船电技术, 2009, 29(3): 20–24. doi: 10.3969/j.issn.1003-4862.2009.03.007HUANG Q L, LIU G H, LIU W T. Reliability evaluation of structure complex shipboard distribution network[J]. Marine Electric & Electronic Technology, 2009, 29(3): 20–24 (in Chinese). doi: 10.3969/j.issn.1003-4862.2009.03.007 [2] 符传福, 陈钦柱, 姚冬, 等. 电网设备综合评估方法研究[J]. 自动化技术与应用, 2020, 39(7): 157–159. doi: 10.3969/j.issn.1003-7241.2020.07.036FU C F, CHEN Q Z, YAO D, et al. Research on comprehensive evaluation method of power grid equipment[J]. Techniques of Automation and Applications, 2020, 39(7): 157–159 (in Chinese). doi: 10.3969/j.issn.1003-7241.2020.07.036 [3] 金鑫. 舰船风险评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2004.JIN X. The study of the method of risk assessment of warship[D]. Harbin: Harbin Engineering University, 2004 (in Chinese). [4] 杨洋. 基于风险的电力系统连锁故障协调控制的研究[D]. 合肥: 合肥工业大学, 2018.YANG Y. Research on coordinated control in cascading failure of power system based on risk[D]. Hefei: Hefei University of Technology, 2018 (in Chinese). [5] 程林, 常垚, 刘满君, 等. 基于伪时序状态转移抽样法评估含储能电力系统可靠性[J]. 电力系统自动化, 2014, 38(7): 53–59. doi: 10.7500/AEPS20130820012CHENG L, CHANG Y, LIU M J, et al. Reliability evaluation of energy storage integrated power system based on pseudo-sequential state transition sampling algorithm[J]. Automation of Electric Power Systems, 2014, 38(7): 53–59 (in Chinese). doi: 10.7500/AEPS20130820012 [6] 何迪, 章禹, 郭创新, 等. 一种面向风险评估的输电线路故障概率模型[J]. 电力系统保护与控制, 2017, 45(7): 69–76. doi: 10.7667/PSPC160465HE D, ZHANG Y, GUO C X, et al. Failure probability model of transmission lines for risk assessment[J]. Power System Protection and Control, 2017, 45(7): 69–76 (in Chinese). doi: 10.7667/PSPC160465 [7] YING L M, JIA Y T, LI W N. Research on state evaluation and risk assessment for relay protection system based on machine learning algorithm[J]. IET Generation, Transmission & Distribution, 2020, 14(18): 3619–3629. [8] 张忠会, 李玉婷, 何乐彰, 等. 蒙特卡洛方法在电力系统静态安全风险评估中的应用[J]. 电测与仪表, 2015, 52(19): 106–111. doi: 10.3969/j.issn.1001-1390.2015.19.019ZHANG Z H, LI Y T, HE L Z, et al. Application of Monte Carlo methods in power system static security risk assessment[J]. Electrical Measurement & Instrumentation, 2015, 52(19): 106–111 (in Chinese). doi: 10.3969/j.issn.1001-1390.2015.19.019 [9] 朱益华, 罗毅, 段涛, 等. 基于输电线路实时评估模型的电力系统静态安全在线风险评估[J]. 电力自动化设备, 2014, 34(7): 150–156. doi: 10.3969/j.issn.1006-6047.2014.07.026ZHU Y H, LUO Y, DUAN T, et al. Online risk assessment based on real-time evaluation model of transmission line for static security of power system[J]. Electric Power Automation Equipment, 2014, 34(7): 150–156 (in Chinese). doi: 10.3969/j.issn.1006-6047.2014.07.026 [10] 朱益华. 基于输电线路实时评估模型的电力系统静态安全在线风险评估[D]. 武汉: 华中科技大学, 2013.ZHU Y H. The online risk assessment of power system static security based on the real-time evaluation model of transmission line[D]. Wuhan: Huazhong University of Science & Technology, 2013 (in Chinese). [11] 孙启明, 石立宝, 司大军, 等. 基于连锁故障事故链搜索的输电网风险评估研究[J]. 电力系统保护与控制, 2017, 45(19): 27–34. doi: 10.7667/PSPC201702SUN Q M, SHI L B, SI D J, et al. Study on the risk assessment for transmission network based on failure chain search[J]. Power System Protection and Control, 2017, 45(19): 27–34 (in Chinese). doi: 10.7667/PSPC201702 [12] NI M, MCCALLEY J D, VITTAL V, et al. Online risk-based security assessment[J]. IEEE Power Engineering Review, 2007, 22(11): 59. [13] 王晶. 电力系统可靠性评估中的抽样方法研究[D]. 济南: 山东大学, 2007.WANG J. Research on sampling method in power system reliability evaluation[D]. Ji'nan: Shandong University, 2007 (in Chinese). [14] 刘沛清, 李华强, 赵阳, 等. 考虑元件综合重要度的电网安全性风险评估方法[J]. 电力自动化设备, 2015, 35(4): 132–138, 144.LIU P Q, LI H Q, ZHAO Y, et al. Power grid security risk assessment considering comprehensive element importance index[J]. Electric Power Automation Equipment, 2015, 35(4): 132–138, 144 (in Chinese). -