Optimal design of ship-engine-propeller matching for inland ships under multiple operation conditions
-
摘要:
目的 内河船舶在航行时存在顺水、逆水和急流等多种工况,传统的内河船舶船−机−桨匹配设计方法仅对船舶在逆水上行时进行了匹配设计,而在顺水下行工况,因船舶推进效率低、主机利用率低,造成油耗成本高、经济性较差等,因此需进行多工况内河船舶船−机−桨匹配优化设计。 方法 首先,在不同工况下对内河船舶推进系统的各参数进行设计,并将结果进行对比得出各设计参数对整体推进系统的影响;然后,对船舶推进系统的设计过程进行分析,以航行成本和推进系统效率为目标函数,以螺旋桨设计参数、主机功率、船舶上水航速和下水航速为变量,建立数学模型;最后,应用NSGA-Ⅱ算法进行多目标优化,得到兼顾经济性和推进效率的船舶主机功率和推进系统设计参数。 结果 结果显示,使用所提方法得到的设计参数能够更好地适配内河的通航环境,船舶的经济性更高。 结论 研究成果可为内河船舶推进系统的选型与匹配优化提供设计工具,从而为船舶的实际运行提供理论依据。 Abstract:Objective There are multiple operation conditions for ships navigation in inland river waterway, such as sailing downstream, upstream as well as in rapid stream, but the traditional ship-engine-propeller matching method can only ensure that the inland ships meet the design requirements when they travels upstream. Under downstream conditions, the ship propulsion's efficiency and energy utilization rate of main engine are both low, resulting in high fuel consumption and less cost-effectivness. To this end, the optimal design of ship-engine-propeller matching for the inland ships under multiple conditions is carried out. Methods First, the parameters of an inland ship's propulsion system under various conditions are designed, and the results are compared to ascertain the influence of each design parameter on the overall propulsion system. Then, the design process of the propulsion system is analyzed, and a mathematical model is established with navigation cost and propulsion system efficiency as the objective functions, and the design parameters of the propeller, main engine power and ship speeds (upstream & downstream) as variables. Finally, the main engine power and design parameters of propulsion system are determined balancing both economy and efficiency using the NSGA-II algorithm. Results The design parameters obtained using this method are easily adapted to the traffic environment of inland ships, making them more economical. Conclusion The results of this study can not only provide design tools for the selection of ship propulsion systems, but also provide a theoretical basis for its practical application. -
表 1 长江航道水流速度及里程
Table 1. Water flow rate and range of Yangtze waterway
航区 水流速度/(km·h−1) 里程/km 上游(宜宾—宜昌) 8~5 648 中游(宜昌—武汉) 5~4 626 下游(武汉—上海) 4~1 1125 表 2 NSGA-II算法参数
Table 2. Parameters of NSGA-II algorithm
参数 数值 最大遗传代数 800 种群规模 500 突变率 0.3 变异类型 Random 重组率 0.7 表 3 原始值与优化结果的对比(Pareto前沿解)
Table 3. Comparison of initial values and optimal solutions (Pareto front)
参数 原始值 优化结果 第1次 第2次 第3次 第4次 第5次 P/D 0.66 0.68 0.64 0.84 0.87 0.40 AE/AO 0.45 0.49 0.76 0.85 0.70 0.55 n1 /(r·min−1) 315.84 321.6 260.4 280.7 350.4 250.8 n2 /(r·min−1) 315.84 215.6 172.2 204.6 220.6 167.2 D/m 2.0 1.85 2.18 2.39 2.14 2.75 V1 /(km·h−1) 18 15.72 16.3 16.7 15.78 16.15 V2 /(km·h−1) 16 12.29 10.30 13.6 14.3 13.0 Ps /kW 604.91 517.41 515.79 581.61 550.48 586.95 ηT 0.58 0.62 0.6 0.62 0.60 0.66 f1 /万元 5.83 4.94 4.77 5.08 5.48 5.63 f2 /万元 725.89 620.9 618.94 697.8 660.58 704.34 -
[1] ESMAILIAN E, GHASSEMI H, ZAKERDOOST H. Systematic probabilistic design methodology for simultaneously optimizing the ship hull-propeller system[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(3): 246–255. doi: 10.1016/j.ijnaoe.2016.06.007 [2] 覃峰, 詹志刚, 杨波, 等. 基于遗传算法的船舶推进系统船、机、桨匹配优化设计[J]. 武汉理工大学学报(交通科学与工程版), 2003, 27(1): 50–52.QIN F, ZHAN Z G, YANG B, et al. Genetic algorithm-based optimization design for match of ship, engine and propeller[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2003, 27(1): 50–52 (in Chinese). [3] REN H L, DING Y, SUI C B. Influence of EEDI (energy efficiency design index) on ship-engine-propeller matching[J]. Journal of Marine Science and Engineering, 2019, 7(12): 425. doi: 10.3390/jmse7120425 [4] 马永杰. 船机桨匹配及数值仿真[D]. 武汉: 华中科技大学, 2011.MA Y J. The matching of ship, engine and propeller and numerical simulation[D]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese). [5] 胡义, 刘宗发. 基于CFD技术的机桨匹配初步设计[J]. 中国航海, 2018, 41(1): 38–42.HU Y, LIU Z F. Preliminary design of engine-propeller matching based on CFD technology[J]. Navigation of China, 2018, 41(1): 38–42 (in Chinese). [6] 纪宏志, 邵钢, 徐巍, 等. 柴−燃联合动力装置“船−机−桨”匹配特性[J]. 船舶工程, 2019, 41(8): 42–46,133.JI H Z, SHAO G, XU W, et al. Matching characteristics of "ship-engine-propelle" of CODAG[J]. Ship Engineering, 2019, 41(8): 42–46,133 (in Chinese). [7] 杨琨, 舒佳成, 胡彪. 基于互联网的船舶机桨匹配远程计算平台[J]. 中国航海, 2017, 40(2): 25–28.YANG K, SHU J C, HU B. Internet-based remote calculation platform for diesel engine-propeller matching[J]. Navigation of China, 2017, 40(2): 25–28 (in Chinese). [8] 秦业志, 阮礽忠. 吊舱式电力推进船舶螺旋桨匹配设计仿真研究[J]. 中国舰船研究, 2014, 9(6): 65–72.QIN Y Z, RUAN R Z. The simulation research of matching design of propellers to POD propulsion ships[J]. Chinese Journal of Ship Research, 2014, 9(6): 65–72 (in Chinese). [9] 王建政. 船机桨匹配设计软件开发[D]. 哈尔滨: 哈尔滨工程大学, 2012.WANG J Z. Software development for matching design of ship engine and propeller[D]. Harbin: Harbin Engineering University, 2012 (in Chinese). [10] 曹梅亮. 切割桨叶随边以适应船−机−桨的匹配[J]. 上海交通大学学报, 2000, 34(1): 148–151.CAO M L. Trailing edge incision to improve the match between power and revolutions[J]. Journal of Shanghai Jiao Tong University, 2000, 34(1): 148–151 (in Chinese). [11] 刘海强, 吕林. 船舶机桨匹配设计与分析计算平台研究[J]. 船海工程, 2008, 37(3): 56–58.LIU H Q, LV L. Research on calculation platform for matching design of screw propeller and diesel engine[J]. Ship & Ocean Engineering, 2008, 37(3): 56–58 (in Chinese). [12] XIE G M. Optimal preliminary propeller design based on multi-objective optimization approach[J]. Procedia Engineering, 2011, 16: 278–283. doi: 10.1016/j.proeng.2011.08.1084 [13] 王宸. 船舶非设计工况的机桨匹配研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.WANG C. Research on ship-engine-propeller matching under off-design conditions[D]. Harbin: Harbin Engineering University, 2019 (in Chinese). [14] 梁赞通. 调距桨推进装置机桨优化匹配研究[D]. 大连: 大连海事大学, 2019.LIANG Z T. The optimal matching of the engine-propeller for controllable pitch propeller ship[D]. Dalian: Dalian Maritime University, 2019 (in Chinese). -