Multi-state luxury cruise ship seakeeping based on overlapping grids
-
摘要:
目的 在豪华邮轮的设计阶段,为了节约成本,需采用流体动力学(CFD)方法对设计中的邮轮进行耐波性能预报。 方法 以一艘大型豪华邮轮为研究对象,使用自主开发的船舶水动力学CFD求解器naoe-FOAM-SJTU对模型尺度下的豪华邮轮进行耐波性数值模拟。耐波性的模拟在造波方式上采用速度入口输入式造波,对不同波高和不同浪向下的邮轮运动进行预报和总结。 结果 评估发现,目前设计得到的邮轮船模在最大航速、波高为0.062 5,0.1和0.15 m工况下基本符合船舶舒适性要求;在设计航速下、波高为0.225 m、迎浪工况下符合船舶安全性要求。 结论 在完成计算的工况下,邮轮的船型设计符合船舶耐波性评估标准中的安全标准和舒适性标准。 -
关键词:
- 豪华邮轮 /
- 重叠网格 /
- 耐波性评估 /
- naoe-FOAM-SJTU
Abstract:Objective In the design stage of a luxury cruise ship, in order to save costs, it is necessary to use the computational fluid dynamics (CFD) method to predict the seakeeping performance of the cruise ship under design. Method The research object of this paper is a large luxury cruise ship. The self-developed ship hydrodynamics CFD solver naoe-FOAM-SJTU is used to simulate the seakeeping performance of the luxury cruise ship at model scale. The seakeeping simulation adopts the speed entrance input wave-making method, and predicts and summarizes the cruise movement under different wave heights and downwards. Results The evaluation finds that the designed cruise ship model basically meets the requirements of ship comfort at maximum speed and wave heights of 0.062 5, 0.1 and 0.15 m, and meets the requirements of ship safety at the design speed, wave height of 0.225 m and heading sea conditions. Conclusion Under the calculated working conditions, this cruise ship design conforms to the safety and comfort standards in the seakeeping evaluation standards of luxury cruise ships. -
表 1 豪华邮轮船模主尺度(缩尺比1∶40)
Table 1. Main dimensions of model-scale luxury cruise ships (scale factor is 40)
参数 数值 垂线间长Lpp /m 7.458 0 型宽B/m 0.966 0 型深D/m 0.684 0 设计吃水T/m 0.214 0 方形系数Cb 0.738 7 表 2 船舶耐波性评估标准(均方根值)
Table 2. Ship Seakeeping evaluation standard (RMS)
标准类别 垂向加速度g 横摇/(°) 纵摇/(°) 参考标准 安全标准 0.20 4.0 2.0 ISO 2631/3
1987&1982舒适性标准 0.10 3.0 1.5 结构设计标准 0.33 − − 表 3 不同计算工况设置
Table 3. List of different calculation conditions
工况号 波高/m 浪向角/(°) 波长λ 周期/s Fr 实船航
速/kn1 0.062 5 0 2 0.1 0 3 0.15 0 1Lpp 2.186 0.209
(最大航速)22 4 0.15 45 5 0.15 90 6 0.225 0 1Lpp 2.186 0.171
(设计航速)18 -
[1] 冯粒, 袁勃. 十部门联合印发意见促进我国邮轮经济发展[EB/OL]. (2018-09-27)[2019-06-20]. http://finance.people.com.cn/n1/2018/0927/c1004-30317446.html.FENG L, YUAN B. Some opinions and suggestions on promoting the development of cruise industry in China[EB/OL]. (2018-09-29)[2019-06-20]. http://finance.people.com.cn/n1/2018/0927/c1004-30317446.html (in Chinese). [2] YANG T Y. Analysis on the development path of Shanghai luxury cruise ship supporting industry[J]. Shanghai University of Engineering Science, 2018(36): 29–31. [3] CAO Y, YU B J, WANG J F. Modeling the seakeeping performance of luxury cruise ships[J]. Journal of Marine Science and Application, 2010, 9(3): 292–300. doi: 10.1007/s11804-010-1010-9 [4] 王艳霞, 彭必业, 赵强. 尾板对中型豪华邮轮阻力影响的试验研究[J]. 水动力学研究与进展 (A辑), 2017, 32(6): 725–731.WANG Y X, PENG B Y, ZHAO Q. Experimental study on the influence of trim flap on the resistance of a medium-sized luxury cruise[J]. Chinese Journal of Hydrodynamics (Ser. A), 2017, 32(6): 725–731 (in Chinese). [5] 王杉, 王艳霞, 赵强, 等. 参数化方法的中型豪华游船特殊球艏线型优化[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 646–649.WANG S, WANG Y X, ZHAO Q, et al. Bulbous bow optimization for a medium-sized luxury cruise based on parametric design method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(5): 646–649 (in Chinese). [6] 刘鑫旺, 万德成. 豪华邮轮多航速兴波阻力的船型优化[J]. 中国舰船研究, 2020, 15(5): 1–10, 40.LIU X W, WAN D C. Hull form optimization of wave-making resistance in different speeds for a luxury cruise ship[J]. Chinese Journal of Ship Research, 2020, 15(5): 1–10, 40 (in Chinese). [7] SHEN Z R, WAN D C, CARRICA P M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering[J]. Ocean Engineering, 2015, 108: 287–306. doi: 10.1016/j.oceaneng.2015.07.035 [8] LIU C, WANG J H, WAN D C. CFD computation of wave forces and motions of DTC ship in oblique waves[J]. International journal of offshore and polar engineering, 2018, 28(2): 154–163. doi: 10.17736/ijope.2018.sh21 [9] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149 [10] 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014.SHEN Z R. Development of overset grid technique for hull-propeller-rudder interactions[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese). -
ZG2277_en.pdf
-