留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带自由液面有限长圆柱绕流数值模拟

陈松涛 赵伟文 万德成 高洋洋

陈松涛, 赵伟文, 万德成, 等. 带自由液面有限长圆柱绕流数值模拟[J]. 中国舰船研究, 2022, 17(1): 91–98 doi: 10.19693/j.issn.1673-3185.02274
引用本文: 陈松涛, 赵伟文, 万德成, 等. 带自由液面有限长圆柱绕流数值模拟[J]. 中国舰船研究, 2022, 17(1): 91–98 doi: 10.19693/j.issn.1673-3185.02274
CHEN S T, ZHAO W W, WAN D C, et al. Numerical simulation of flows around a finite-length cylinder with free surface[J]. Chinese Journal of Ship Research, 2022, 17(1): 91–98 doi: 10.19693/j.issn.1673-3185.02274
Citation: CHEN S T, ZHAO W W, WAN D C, et al. Numerical simulation of flows around a finite-length cylinder with free surface[J]. Chinese Journal of Ship Research, 2022, 17(1): 91–98 doi: 10.19693/j.issn.1673-3185.02274

带自由液面有限长圆柱绕流数值模拟

doi: 10.19693/j.issn.1673-3185.02274
基金项目: 国家自然科学基金资助项目 (51879159, 52131102, 51909160);国家重点研发计划资助项目(2019YFB1704200)
详细信息
    作者简介:

    陈松涛,男,1997年生,博士生。研究方向:海洋平台涡激运动,两相流数值模拟。E-mail:songtao.chen@sjtu.edu.cn

    赵伟文,男,1990年生,博士,助理研究员。研究方向:高雷诺数流动,自由面流动数值方法,涡激运动数值模拟。E-mail:weiwen.zhao@sjtu.edu.cn

    万德成,男,1967年生,博士,教授。研究方向:船海计算水动力学,高性能计算,CFD和CAE软件研发。E-mail:dcwan@sjtu.edu.cn

    高洋洋,女,1987年生,副教授。研究方向:海洋工程水动力学研究。Email:yygao@zju.edu.cn

    通信作者:

    万德成

  • 中图分类号: U661.1

Numerical simulation of flows around a finite-length cylinder with free surface

More Information
    Corresponding author: dcwan@sjtu.edu.cn
知识共享许可协议
带自由液面有限长圆柱绕流数值模拟陈松涛,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了探究自由液面及自由端对典型钝体绕流问题的影响,对带自由液面的有限长圆柱绕流进行研究。  方法  基于延时分离涡模拟(DDES)技术和分段线性界面重构(PLIC)方法,利用自主开发的naoe-FOAM-SJTU求解器开展数值模拟。  结果  结果显示,自由液面和自由端的存在增大了局部位置的升、阻力,推迟了圆柱表面流动分离的发生;相较于深吃水位置,自由液面附近流向的速度“恢复”延缓,横向的速度呈向外运动的趋势;自由液面的变形产生了大量细碎的漩涡,自由端的卷拧状漩涡在一定程度上抑制了卡门涡街的发展。  结论  研究表明,目前采用的数值方法能够准确捕捉复杂流场,同时,自由液面和自由端的存在将显著改变流场沿吃水方向的分布。
  • 图  分段线性界面重构方法二维示意图

    Figure  1.  Two-dimensional diagram of PLIC method

    图  计算域

    Figure  2.  Computational domain

    图  计算网格

    Figure  3.  Computational grids

    图  平均自由液面抬升剖线图

    Figure  4.  Profiles of the time-averaged free surface elevation

    图  平均自由液面等高线图

    Figure  5.  Contour lines of the time-averaged free surface elevation

    图  平均阻力系数曲线

    Figure  6.  Profile of the time-averaged drag coefficient

    图  升力系数均方根曲线

    Figure  7.  Root-mean-square profile of the lift coefficient

    图  不同深度阻力系数时历曲线

    Figure  8.  Time histories of drag coefficient at different depths

    图  不同深度升力系数时历曲线

    Figure  9.  Time histories of lift coefficient at different depths

    图  10  圆柱表面时均压力系数图

    Figure  10.  Time-averaged pressure coefficients of cylinder surface

    图  11  x-z平面时均流向速度图

    Figure  11.  Time-averaged streamwise velocity on x-z plane

    图  12  时均速度剖面曲线

    Figure  12.  Profiles of the time-averaged velocity

    图  13  时均速度梯度曲线

    Figure  13.  Profiles of the time-averaged velocity gradient

    图  14  时均压力系数曲线

    Figure  14.  Time-averaged pressure coefficient profiles

    图  15  瞬时垂直涡量云图

    Figure  15.  Instantaneous vertical vorticity

    图  16  瞬时涡结构

    Figure  16.  Instantaneous vortical structure

  • [1] WILLIAMSON C H K. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 477–539. doi: 10.1146/annurev.fl.28.010196.002401
    [2] 端木玉, 万德成. 雷诺数为3 900时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6): 11–20.

    DUAN M Y, WAN D C. Large-eddy simulation of the flow past a cylinder with Re=3 900[J]. Ocean Engineering, 2016, 34(6): 11–20 (in Chinese).
    [3] KRAJNOVIĆ S. Flow around a tall finite cylinder explored by large eddy simulation[J]. Journal of Fluid Mechanics, 2011, 676: 294–317. doi: 10.1017/S0022112011000450
    [4] 王晓聪, 桂洪斌, 刘洋. 三维有限长圆柱绕流数值模拟[J]. 中国舰船研究, 2018, 13(2): 27–34. doi: 10.3969/j.issn.1673-3185.2018.02.004

    WANG X C, GUI H B, LIU Y. Numerical Simulation of three-dimensional flow around a circular cylinder of finite length[J]. Chinese Journal of Ship Research, 2018, 13(2): 27–34 (in Chinese). doi: 10.3969/j.issn.1673-3185.2018.02.004
    [5] CHAPLIN J R, TEIGEN P. Steady flow past a vertical surface-piercing circular cylinder[J]. Journal of Fluids and Structures, 2013, 18(3/4): 271–285.
    [6] POTTS D A, BINNS J R, MARCOLLO H, et al. Hydrodynamics of towed vertical surface-piercing cylinders[C]//Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 95109.
    [7] ZHAO W W, WAN D C, ZHAO S X. CFD simulation of two-phase flows past a surface-piercing circular cylinder[C]//Proceedings of the 30th International Ocean and Polar Engineering Conference. Shanghai, China: ISOPE, 2020: 1780-1785.
    [8] KOO B, YANG J M, YEON S M, et al. Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(3): 529–561. doi: 10.2478/IJNAOE-2013-0197
    [9] ROSETTI G F, VAZ G, HOEKSTRA M, et al. CFD calculations for free-surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiment[C]//Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France: ASME, 2013: 10963.
    [10] BENITZ M A, CARLSON D W, SEYED-AGHAZADEH B, et al. CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios[J]. Computers & Fluids, 2016, 136: 247–259.
    [11] WANG J H, ZHAO W W, WAN D C. Development of naoe-FOAM-SJTU solver based on OpenFOAM for marine hydrodynamics[J]. Journal of Hydrodynamics, 2019, 31(1): 1–20. doi: 10.1007/s42241-019-0020-6
    [12] ZHA R S, YE H X, SHEN Z R, et al. Numerical computations of resistance of high speed catamaran in calm water[J]. Journal of Hydrodynamics, Ser. B, 2015, 26(6): 930–938.
    [13] ZHAO M S, ZHAO W W, WAN D C. Numerical simulations of propeller cavitation flows based on OpenFOAM[J]. Journal of Hydrodynamics, 2020, 32(6): 1071–1079. doi: 10.1007/s42241-020-0071-8
    [14] SHEN Z R, WAN D C, CARRICA P M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering[J]. Ocean Engineering, 2015, 108: 287–306. doi: 10.1016/j.oceaneng.2015.07.035
    [15] DUANMU Y, ZOU L, WAN D C. Numerical analysis of multi-modal vibrations of a vertical riser in step currents[J]. Ocean Engineering, 2018, 152: 428–442. doi: 10.1016/j.oceaneng.2017.12.033
    [16] ZHAO W W, ZOU L, WAN D C, Et al. Numerical investigation of vortex-induced motions of a paired-column semi-submersible in currents[J]. Ocean Engineering, 2018, 164: 272–283. doi: 10.1016/j.oceaneng.2018.06.023
    [17] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[M]//HANJALIĆ K, NAGANO Y, TUMMERS M J. Turbulence, Heat and Mass Transfer 4. Washington: Begell House, Inc. , 2003: 625-632.
    [18] GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence Combust, 2012, 88(3): 431–449. doi: 10.1007/s10494-011-9378-4
    [19] 赵伟文, 万德成. 用DES分离涡方法数值模拟串列双圆柱绕流问题[J]. 应用数学和力学, 2016, 37(12): 1272–1281.

    ZHAO W W, WAN D C. Detached-eddy simulation of flow past tandem cylinders[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1272–1281 (in Chinese).
    [20] YOUNGS D L. Time-dependent multi-material flow with large fluid distortion[M]//MORTON K W, BAINES M J. Numerical Methods for Fluid Dynamics. New York: Academic Press, 1982: 273-285.
    [21] STERN F. Integrated high-fidelity validation experiments and les for a surface-piercing truncated cylinder for sub and critical Reynolds and Froude numbers[C]//NATO Specialist Meeting, 2016.
    [22] ZHAO W W, WANG J H, WAN D C. Vortex identification methods in marine hydrodynamics[J]. Journal of Hydrodynamics, 2020, 32(2): 286–295. doi: 10.1007/s42241-020-0022-4
  • 加载中
图(17)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  183
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-03-09
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回