Hydrodynamic performance analysis of waterjet propulsor inlet duct
-
摘要:
目的 研究喷水推进器进口流道主参数对其性能的影响,为喷水推进器设计提供依据。 方法 基于STAR-CCM+商业软件,通过定常雷诺平均NS方程(RANS),数值模拟分析不同进速比(IVR)工况下喷水推进器进口流道轴线高度和进流角度对其水动力性能的影响,并根据国际拖曳水池会议(ITTC)的不确定度分析规程进行数值不确定度分析。采用六面体结构化网格对计算域进行离散,采用Realizable k-ε 两层湍流模型对控制方程进行封闭,离散格式为二阶。压力−速度耦合计算选用压力耦合方程组的半隐式算法(SIMPLE)。 结果 结果显示,数值的不确定度小于4%,表明所采用的网格收敛性良好,数值结果可靠。 结论 研究表明,当IVR =0.7~1.1时,进口流道效率较高;对于IVR较大的工况,应减小进流角;对于IVR较小的工况,则应适当增加轴线高度,以改善出口流动的不均匀度。 Abstract:Objectives The effects of the key parameters of the inlet duct of a waterjet propulsor on its hydrodynamic performance are studied, providing references for the design of waterjet propulsors. Methods Based on STAR-CCM+ software, the influence of the axis height and inlet angle of a waterjet inlet duct on its hydrodynamic performance under different intake velocity ratio (IVR) conditions is studied using steady Reynolds-averaged Navier-Stokes equations (RANS) numerical simulation. Numerical uncertainty analysis is carried out according to the international towing tank conference (ITTC) uncertainty analysis procedure. In this paper, the computational domain is discretized with hexahedral structured grids. The set of governing equations is closed using the Realizable k-ε two-layer turbulence model, and the discretization schemes are second-order accurate. The semi-implicit method for pressure linked equations (SIMPLE) algorithm is applied in the pressure-velocity coupling calculation. Results The results show that the numerical uncertainty is less than 4%, indicating that the grids used in this paper yield well-converged and reliable numerical results. Conclusions The efficiency of the inlet duct is higher in the range of IVR = 0.7~1.1. For large IVR, the inlet angle should be reduced. For small IVR, the axis height can be appropriately increased to improve the homogeneity of flow at the exit of the inlet duct. -
Key words:
- waterjet /
- inlet duct /
- numerical uncertainty /
- hydrodynamic performance
-
表 1 网格主要参数
Table 1. The main parameters of grid
网格 进口流道网格尺度/mm 壁面第1层网格高度/mm 总网格数 粗网格 7.07 0.002 0 70×104 中网格 5.00 0.001 4 198×104 细网格 3.54 0.001 0 560×104 表 2 不确定度计算结果
Table 2. Uncertainty calculation results
网格 数值模拟结果 数值不确定度/% η 粗网格 90.79 0.1 中网格 90.74 细网格 90.85 ζ 粗网格 0.208 8 3.9 中网格 0.208 0 细网格 0.207 4 -
[1] 张拯, 王立祥. 关于喷水推进装置平进口边界层影响系数估算的探讨[J]. 船舶, 2008, 19(3): 10–14.ZHANG Z, WANG L X. Estimation for inlet boundary-layer affect coefficient around waterjet duct[J]. Ship & Boat, 2008, 19(3): 10–14 (in Chinese). [2] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响[J]. 中国舰船研究, 2017, 12(2): 22–29. doi: 10.3969/j.issn.1673-3185.2017.02.003QIAN H, SONG K W, GUO C Y, et al. Influence of waterjet duct on ship's resistance performance[J]. Chinese Journal of Ship Research, 2017, 12(2): 22–29 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.003 [3] 史俊, 冯学东, 李光琛, 等. 进口长度对船舶喷水推进器进水流道性能的影响[J]. 船海工程, 2016, 45(6): 81–84, 88.SHI J, FENG X D, LI G C, et al. Influence of the inlet length upon hydrodynamics performance for ship's water jet propulsion[J]. Ship & Ocean Engineering, 2016, 45(6): 81–84, 88 (in Chinese). [4] 李臣, 束晓华, 赵春生. 基于流道倾角对喷水推进泵流道性能的影响研究[J]. 舰船科学技术, 2017, 39(9): 49–53.LI C, SHU X H, ZHAO C S. Research on the influence of waterjet duct performance based on inclination of waterjet duct[J]. Ship Science and Technology, 2017, 39(9): 49–53 (in Chinese). [5] 汲国瑞, 蔡佑林, 李宁, 等. 喷水推进进口流道唇口参数对出口不均匀度和驻点位置影响分析[J]. 中国造船, 2016, 57(4): 109–115.JI G R, CAI Y L, LI N, et al. Influence of lip parameters on non-uniformity and stagnation point at inlet duct of waterjet propulsion[J]. Shipbuilding of China, 2016, 57(4): 109–115 (in Chinese). [6] 杨福芹, 王学志, 姜敬伟, 等. 船舶喷水推进器进水流道的参数化分析[J]. 机电工程, 2109, 36(11): 1212–1215.YANG F Q, WANG X Z, JIANG J W, et al. Parametric analysis of the inlet duct in the marine waterjet propulsor[J]. Journal of Mechanical & Electrical Engineering, 2109, 36(11): 1212–1215 (in Chinese). [7] ITTC. Uncertainty analysis in CFD, verification and validation methodology and procedures: 7.5-03-01-01[R]. ITTC-Recommended Procedures and Guidelines, 2021. [8] ITTC. Uncertainty analysis in CFD, examples for resistance and flow: 7.5-03-02-01[R]. ITTC-Recommended Procedures and Guidelines, 1999. [9] ITTC. The specialist committee on validation of waterjet test procedures, final report and recommendations to the 24th ITTC[R]. Proceedings of the 24th ITTC, 2005. -
ZG2269_en.pdf
-