Ship course sliding mode control system based on FTESO and sideslip angle compensation
-
摘要:
目的 为提高水面欠驱动船舶的航向跟踪性能,减小航向误差,研究一种基于有限时间扩张状态观测器(FTESO)的船舶航向滑模控制方法。 方法 首先,采用预滤波器减小船舶转向时较大的航向变化率影响,利用扩张状态观测器对时变漂角进行估计,然后通过估计出的漂角及时修正航向误差。为简化控制器设计,艏摇方向上的外部扰动和内部不确定项由观测器同时估计,并在控制器设计中进行补偿。选取含积分项的滑模面,结合FTESO设计滑模控制律,并考虑输入饱和约束,最终通过李雅普诺夫理论证明控制系统的稳定性。 结果 仿真结果显示,所研究的控制方法使水面船舶能够在较短的时间内减小航向跟踪误差并收敛至0。 结论 研究成果可为水面船舶航向跟踪控制设计提供参考。 -
关键词:
- 航向控制 /
- 漂角 /
- 滑模控制 /
- 有限时间扩张状态观测器 /
- 输入饱和约束
Abstract:Objectives To improve the performance of course tracking and reduce the course errors of an underactuated surface ship, a heading control method based on a finite-time extended state observer (FTESO) and sliding mode control algorithm is studied. Methods A pre-filter is proposed to reduce the influence of the large rate of speed change when steering. The time-varying sideslip angle is estimated by FTESO, and course error is amended by the estimated sideslip angle in a timely manner. To simplify the design of the controller, external disturbance and internal uncertainty in the yaw direction are estimated by the observer simultaneously, and compensated for in the controller design. Considering input saturation, a sliding mode control law is designed by combining FTESO and a sliding mode surface with an integral term. The stability of the control system is proven by the Lyapunov theory. Results The simulation results show that the proposed controller reduces course tracking error and makes it converge to zero in a shorter time. Conclusions The results of this study can provide references for the course tracking control design of surface ships. -
表 1 不同控制方法下的参数设计
Table 1. The parameters of different controllers
控制方法 控制器 观测器 ${k_1}$ ${k_2}$ $p$ ${b_1}$ ${b_2}$ ${m_1}$ ${m_2}$ ${n_1}$ ${n_2}$ ${\alpha _1}$ 考虑漂角 20 3 0.6 4.8 0.1 10 300 0.01 0.01 0.75 不考虑漂角 10 2 0.6 5 0.3 15 350 0.01 0.01 0.75 -
[1] 吴瑞, 杜佳璐, 孙玉清, 等. 基于状态反馈线性化和ESO的船舶航向跟踪控制[J]. 大连海事大学学报, 2019, 45(3): 93–99.WU R, DU J L, SUN Y Q, et al. Ship course tracking control based on the state feedback linearization and ESO[J]. Journal of Dalian Maritime University, 2019, 45(3): 93–99 (in Chinese). [2] ZHANG X K, ZHANG Q, REN H X, et al. Linear reduction of backstepping algorithm based on nonlinear decoration for ship course-keeping control system[J]. Ocean Engineering, 2018, 147: 1–8. doi: 10.1016/j.oceaneng.2017.10.017 [3] PERERA L P, SOARES C G. Pre-filtered sliding mode control for nonlinear ship steering associated with disturbances[J]. Ocean Engineering, 2012, 51: 49–62. doi: 10.1016/j.oceaneng.2012.04.014 [4] 沈智鹏, 邹天宇. 控制方向未知的无人帆船自适应动态面航向控制[J]. 哈尔滨工程大学学报, 2019, 40(1): 94–101.SHEN Z P, ZOU T Y. Adaptive dynamic surface course control for an unmanned sailboat with unknown control direction[J]. Journal of Harbin Engineering University, 2019, 40(1): 94–101 (in Chinese). [5] 朱冬健, 马宁, 顾解忡. 船舶航向非线性系统自适应模糊补偿控制[J]. 上海交通大学学报, 2015, 49(2): 250–254, 261.ZHU D J, MA N, GU X C. Adaptive fuzzy compensation control for nonlinear ship course-keeping[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 250–254, 261 (in Chinese). [6] 王东委, 富月. 基于高阶观测器和干扰补偿控制的模型预测控制方法[J]. 自动化学报, 2020, 46(6): 1220–1228.WANG D W, FU Y. Model predict control method based on higher-order observer and disturbance compensation control[J]. Acta Automatica Sinica, 2020, 46(6): 1220–1228 (in Chinese). [7] PERERA L P, SOARES C G. Lyapunov and Hurwitz based controls for input–output linearisation applied to nonlinear vessel steering[J]. Ocean Engineering, 2013, 66: 58–68. doi: 10.1016/j.oceaneng.2013.04.002 [8] HU C, WANG R R, YAN F J, et al. Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6386–6394. doi: 10.1109/TIE.2016.2573240 [9] BEVLY D A, RYU J, GERDES J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 483–493. doi: 10.1109/TITS.2006.883110 [10] WANG N, SUN Z, YIN J C, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059–14070. doi: 10.1109/ACCESS.2018.2797084 [11] 李芸, 白响恩, 肖英杰. 基于新型扩张干扰观测器的船舶航向滑模控制[J]. 上海交通大学学报, 2014, 48(12): 1708–1713, 1720.LI Y, BAI X E, XIAO Y J. Ship course sliding mode control system based on a novel extended state disturbance observer[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1708–1713, 1720 (in Chinese). [12] XIONG S F, WANG W H, LIU X D, et al. A novel extended state observer[J]. ISA Transactions, 2015, 58: 309–317. doi: 10.1016/j.isatra.2015.07.012 [13] LIANG K, LIN X G, CHEN Y, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean Engineering, 2020, 206: 107245. doi: 10.1016/j.oceaneng.2020.107245 [14] AN L, LI Y, CAO J, et al. Proximate time optimal for the heading control of underactuated autonomous underwater vehicle with input nonlinearities[J]. Applied Ocean Research, 2020, 95: 102002. doi: 10.1016/j.apor.2019.102002 [15] PERRUQUETTI W, FLOQUET T, MOULAY E. Finite-time observers: application to secure communication[J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356–360. doi: 10.1109/TAC.2007.914264 [16] ROSIER L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems and Control Letters, 1992, 19(6): 467–473. doi: 10.1016/0167-6911(92)90078-7 [17] HONG Y G, WANG J K, CHENG D Z. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858–862. doi: 10.1109/TAC.2006.875006 [18] SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152–3156. doi: 10.1016/j.automatica.2008.05.015 [19] HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952. [20] ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67: 46–53. doi: 10.1016/j.automatica.2015.12.029 [21] DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929–944. doi: 10.1016/j.automatica.2004.01.021 [22] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals, and Systems, 2005, 17(2): 101–127. doi: 10.1007/s00498-005-0151-x -
ZG2267_en.pdf
-