留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的正交偶极子阵列信号参数估计

王炜彤 杨健 郭晓冉 刘鲁涛

王炜彤, 杨健, 郭晓冉, 等. 基于压缩感知的正交偶极子阵列信号参数估计[J]. 中国舰船研究, 2022, 17(1): 221–226, 234 doi: 10.19693/j.issn.1673-3185.02262
引用本文: 王炜彤, 杨健, 郭晓冉, 等. 基于压缩感知的正交偶极子阵列信号参数估计[J]. 中国舰船研究, 2022, 17(1): 221–226, 234 doi: 10.19693/j.issn.1673-3185.02262
WANG W T, YANG J, GUO X R, et al. Joint estimation for DOA and polarization parameters of orthogonal dipole array based on compressive sensing[J]. Chinese Journal of Ship Research, 2022, 17(1): 221–226, 234 doi: 10.19693/j.issn.1673-3185.02262
Citation: WANG W T, YANG J, GUO X R, et al. Joint estimation for DOA and polarization parameters of orthogonal dipole array based on compressive sensing[J]. Chinese Journal of Ship Research, 2022, 17(1): 221–226, 234 doi: 10.19693/j.issn.1673-3185.02262

基于压缩感知的正交偶极子阵列信号参数估计

doi: 10.19693/j.issn.1673-3185.02262
基金项目: 国家自然科学基金资助项目(61571146,61801143);中央高校基本科研业务费专项资金资助(3072020CF0815)
详细信息
    作者简介:

    王炜彤,女,1996年生,硕士生。研究方向:波达方向估计。E-mail:wangweitong@hrbeu.edu.cn

    刘鲁涛,男,1977年生,副教授,博士生导师。研究方向:信号处理。E-mail:liulutao@hrbeu.edu.cn

    通信作者:

    王炜彤

  • 中图分类号: TN911.23; U665.22

Joint estimation for DOA and polarization parameters of orthogonal dipole array based on compressive sensing

知识共享许可协议
基于压缩感知的正交偶极子阵列信号参数估计王炜彤,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对传统的极化敏感阵列的波达方向(DOA)估计算法运算复杂度高、实时性差的问题,提出基于压缩感知的正交偶极子极化敏感阵列结构。  方法  将数据压缩思想应用于阵列结构设计,压缩接收信号矢量维度,减少射频前端链路数量,以控制系统的复杂度,使阵列结构设计具有高度的灵活性。基于结构降维多重信号分类(MUSIC)算法;首先,通过空间谱搜索实现信号的DOA估计;然后,利用拉格朗日乘数法降维;最后,通过解决优化问题获取信号的极化参数信息。  结果  仿真实验表明:采用所提阵列结构及方法在入射信号完全极化且非相干时,可以获得正确的信号DOA和极化参数联合估计;在信噪比(SNR)大于10 dB的环境下,俯仰角均方根误差(RMSE)低于0.05°。  结论  与相同条件下同等通道数的非压缩结构相比,基于压缩感知的正交偶极子阵列参数估计结构的估计精度更高、运算复杂度更低。
  • 图  正交偶极子均匀线阵

    Figure  1.  Orthogonal dipole uniform linear array

    图  数据压缩结构示意图

    Figure  2.  Schematic diagram of data compression structure

    图  基于压缩感知的正交偶极子阵列结构示意图

    Figure  3.  Schematic diagram of data compression based on orthogonal dipole array structure

    图  信号参数联合估计结果

    Figure  4.  Joint estimation results of signal parameters

    图  信号参数估计性能随信噪比变化

    Figure  5.  Variation of performance estimation of signal parameters with SNR

  • [1] 王永良. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 1–13.

    WANG Y L. Spatial spectrum estimation theory and algorithm [M]. Beijing: Tsinghua University Press, 2004: 1–13 (in Chinese).
    [2] 张小飞, 汪飞, 徐大专. 阵列信号处理的理论和应用[M]. 2版. 北京: 国防工业出版社, 2013: 1–9.

    ZHANG X F, WANG F, XU D Z. Theory and application of array signal processing [M]. 2nd ed. Beijing: National Defense Industry Press, 2013: 1–9 (in Chinese).
    [3] 徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京: 北京理工大学出版社, 2013: 1–21.

    XU Y G, LIU Z W, GONG X F. Signal processing of polarization sensitive array [M]. Beijing: Beijing Institute of Technology Press, 2013: 1–21 (in Chinese).
    [4] 庄钊文, 徐振海, 肖顺平. 极化敏感阵列信号处理[M]. 北京: 国防工业出版社, 2005: 2–277.

    ZHUANG Z W, XU Z H, XIAO S P. Signal processing of polarization sensitive array [M]. Beijing: National Defense Industry Press, 2005: 2–277 (in Chinese).
    [5] ZHONG B, WANG N. DOA estimation algorithm for wideband polarization sensitive arrays [C]//2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi'an, China: IEEE, 2018: 2516–2520.
    [6] GAO Z Y, XIAO Y. Direction of arrival estimation for conformal arrays with diverse polarizations [C]//12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Qingdao, China: IEEE, 2015: 439–442.
    [7] COMPTON R. On the performance of a polarization sensitive adaptive array[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 718–725. doi: 10.1109/TAP.1981.1142651
    [8] ZHAO J C, TAO H H. Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 1–9. doi: 10.21629/JSEE.2017.01.01
    [9] LAN X, LIU W, NGAN H Y T. Joint 4-D DOA and polarization estimation based on linear tripole arrays [C]//22nd International Conference on Digital Signal Processing (DSP). London, UK: IEEE, 2017: 1-5.
    [10] ZHENG G M. Two-dimensional DOA estimation for polarization sensitive array consisted of spatially spread crossed-dipole[J]. IEEE Sensors Journal, 2018, 18(12): 5014–5023. doi: 10.1109/JSEN.2018.2820168
    [11] GUO M R, ZHANG Y D, CHEN T. DOA estimation using compressed sparse array[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 4133–4146. doi: 10.1109/TSP.2018.2847645
    [12] YU W B, CHEN C L, HE T, et al. Adaptive compressive engine for real-time electrocardiogram monitoring under unreliable wireless channels[J]. IET Communications, 2016, 10(6): 607–615. doi: 10.1049/iet-com.2015.0882
    [13] IBRAHIM M, RAMRIEDDY V, LAVRENKO A, et al. Design and analysis of compressive antenna arrays for direction of arrival estimation[J]. Signal Processing, 2017, 138: 35–47. doi: 10.1016/j.sigpro.2017.03.013
    [14] GU Y J, GOODMAN N A. Information-theoretic compressive sensing kernel optimization and Bayesian Cramér-Rao bound for time delay estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4525–4537. doi: 10.1109/TSP.2017.2706187
    [15] GU Y J, ZHANG Y D, GOODMAN N A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO [C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, LA, USA: IEEE, 2017: 3181-3185.
    [16] CHEN T, GUO M R, HUANG X S. Direction finding using compressive one-bit measurements[J]. IEEE Access, 2018, 6: 41201–41211. doi: 10.1109/ACCESS.2018.2857926
    [17] CHEN T, HAN X T, YU Y Z. A sub-Nyquist sampling digital receiver system based on array compression[J]. Progress in Electromagnetics Research Letters, 2020, 88: 21–28.
    [18] CHEN T, YANG J, GUO M R. A MIMO radar-based DOA estimation structure using compressive measurements[J]. Sensors, 2019, 19(21): 4706. doi: 10.3390/s19214706
    [19] ZHANG X F, XU L Y, XU L, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161–1163. doi: 10.1109/LCOMM.2010.102610.101581
    [20] 李会勇, 张远芳, 谢菊兰. 极化敏感线阵的模值约束降维Root-MUSIC算法[J]. 信号处理, 2016, 32(2): 173–178.

    LI H Y, ZHANG Y F, XIE J L. A reduced-dimensional root-MUSIC algorithm with the modulus constraint based on polarization sensitive linear array[J]. Journal of Signal Processing, 2016, 32(2): 173–178 (in Chinese).
    [21] ZHOU C W, GU Y J, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048
  • 加载中
图(5)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  159
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-04-07
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回