留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流入流下泵喷推进器力谱特性研究

师帅康 黄修长 饶志强 华宏星

师帅康, 黄修长, 饶志强, 等. 湍流入流下泵喷推进器力谱特性研究[J]. 中国舰船研究, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249
引用本文: 师帅康, 黄修长, 饶志强, 等. 湍流入流下泵喷推进器力谱特性研究[J]. 中国舰船研究, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249
SHI S K, HUANG X C, RAO Z Q, et al. Study on force spectrum characteristics of a pump-jet under inflow turbulence[J]. Chinese Journal of Ship Research, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249
Citation: SHI S K, HUANG X C, RAO Z Q, et al. Study on force spectrum characteristics of a pump-jet under inflow turbulence[J]. Chinese Journal of Ship Research, 2022, 17(1): 1–10 doi: 10.19693/j.issn.1673-3185.02249

湍流入流下泵喷推进器力谱特性研究

doi: 10.19693/j.issn.1673-3185.02249
基金项目: 国家自然科学基金资助项目(51875336)
详细信息
    作者简介:

    师帅康,男,1997年生,博士生。研究方向:泵喷推进器流致振动。E-mail: ShuaiKang_Shi@sjtu.edu.cn

    黄修长,男,1983年生,博士,副研究员。研究方向:流致振动、动力学建模与分析。E-mail: xchhuang@sjtu.edu.cn

    通信作者:

    黄修长

  • 中图分类号: U664.34

Study on force spectrum characteristics of a pump-jet under inflow turbulence

知识共享许可协议
湍流入流下泵喷推进器力谱特性研究师帅康,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在解决泵喷推进器在湍流入流作用下非定常力谱不明的问题。  方法  通过湍流生成栅格和频谱合成法相结合的方法,产生具有时间脉动和空间相干结构的湍流,然后将此种方法与模拟相结合,获得泵喷推进器非定常力的宽带谱。  结果  结果显示,所采用的计算方法能够获得泵喷推进器导管、定子和转子合理的非定常力宽带谱;泵喷推进器非定常力宽带谱由叶频及倍频处“驼峰”、定子叶频及相邻定子数倍轴频处特征线谱组成,随着叠加叶片数量的增加,力谱中的“驼峰”变得更加明显,特征线谱峰值呈周期性变化,并在叶片数为转子数时达到最小;由于前置定子和导管的使用,泵喷推进器非定常力宽带谱的幅值比螺旋桨高,但“驼峰”没有螺旋桨明显。  结论  所做研究有助于明确由湍流引起的泵喷推进器非定常力特性,可为低噪声泵喷推进器设计提供参考。
  • 图  计算域和边界条件

    Figure  1.  Computational domain and boundary conditions

    图  泵喷推进器计算网格

    Figure  2.  Grid of pump-jet

    图  泵喷推进器非定常力谱

    Figure  3.  Unsteady force spectrum for pump-jet

    图  泵喷推进器单个叶片力谱(原始力谱)及特征峰值变化

    Figure  4.  Unsteady force spectrum (original spectrum) for single blade and the variation of characteristic peaks for pump-jet

    图  泵喷推进器不同叶片数量时的非定常力谱

    Figure  5.  Unsteady force spectrum of pump-jet under different blade numbers

    图  螺旋桨非定常力谱

    Figure  6.  Unsteady force spectrum of propeller

    图  螺旋桨单个叶片力谱(原始力谱)及特征峰值变化

    Figure  7.  Unsteady force spectrum (original spectrum) for single blade of propeller and the variation of characteristic peaks for original spectrum

    图  Q=30 000时螺旋桨和泵喷推进器流场中的涡量对比

    Figure  8.  Comparison of vorticity in flow field of propeller and pump-jet at Q=30 000

    图  泵喷推进器和螺旋桨不同截面的速度分布

    Figure  9.  Velocity distribution in different sections for pump-jet and propeller

    图  10  3个典型时刻泵喷推进器的瞬态流场和不同叶片推力的时域历程

    Figure  10.  Instantaneous flow field at three moments and time-domain history of different blade thrust

    表  泵喷推进器的几何参数

    Table  1.  Parameters of pump-jet

    转子参数数值定子参数数值
    转子数 9 定子数 11
    直径/mm 218 定子安装角/(°) 20
    毂径比 0.273 叶片剖面 NACA 66
    叶片剖面 NACA 66
    下载: 导出CSV
  • [1] BLAKE W K. Mechanics of flow-induced sound and vibration[M]. Orlando: Academic Press, 1986: 10-12.
    [2] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6–16. doi: 10.3969/j.issn.1673-3185.2017.04.002

    HUA H X, YU Q. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6–16 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.002
    [3] BENNAYA M, ZHANG W P, HEGAZE M M. Estimation of the induced hydrodynamic periodic forces of marine propeller under non-uniform inflow via CFD[J]. Applied Mechanics and Materials, 2014, 467: 293–299.
    [4] ANDERSON J M, CATLETT M R, STEWART D O. Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion[J]. AIAA Journal, 2015, 53(1): 35–45.
    [5] SEVIK M. Sound radiation from a subsonic rotor subjected to turbulence [C]//Proceedings of the International Symposium on Fluid Mechanics and Design of Turbomachinery. University Park, PA: The Pennsylvania State University, 1974, 304: 493–512.
    [6] KIRSCHNER I N, CORRIVEAU P J, MUENCH J D, et al. Validation of an in-air acoustic radiation model using wind-tunnel measurements [C]//ASME Symposium on Flow Noise Modeling, Measurement, and Control, NCA 15ASME Symposium on Flow Noise Modeling, Measurement, and Control. ASME, 1993, 168: 1–5.
    [7] CHEN Y, WANG L, HUA H X. Longitudinal vibration of marine propeller-shafting system induced by inflow turbulence[J]. Journal of Fluids and Structures, 2017, 68: 264–278. doi: 10.1016/j.jfluidstructs.2016.11.002
    [8] 谌勇, 童贤东, 华宏星. 湍流进流诱发的螺旋桨-轴系纵向振动特性研究[J]. 中国造船, 2017, 58(2): 46–59. doi: 10.3969/j.issn.1000-4882.2017.02.006

    CHEN Y, TONG X D, HUA H X. Elastic vibration of marine propeller-shaft system induced by ingested turbulence[J]. Shipbuilding of China, 2017, 58(2): 46–59 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.006
    [9] 王力, 谌勇, 郭云松, 等. 均匀湍流诱发的侧斜螺旋桨的随机振动特性研究[J]. 振动与冲击, 2018, 37(5): 7–12.

    WANG L, CHEN Y, GUO Y S, et al. Random vibration of a skewed propeller-shaft system induced by homogeneous turbulence[J]. Journal of Vibration and Shock, 2018, 37(5): 7–12 (in Chinese).
    [10] TUTAR M, CELIK I, YAVUZ I. Modelling of effect of inflow turbulence on large eddy simulation of bluff body flows[J]. Mathematical and Computational Applications, 2006, 11(3): 225–234. doi: 10.3390/mca11020225
    [11] YAO H Y, CAO L L, WU D Z, et al. Generation and distribution of turbulence-induced forces on a propeller[J]. Ocean Engineering, 2020, 206: 107255. doi: 10.1016/j.oceaneng.2020.107255
    [12] 于丰宁, 邹冬林, 饶柱石, 等. 泵喷推进器在敞水与艇后的激励力计算分析[J]. 船海工程, 2019, 48(4): 96–101. doi: 10.3963/j.issn.1671-7953.2019.04.022

    YU F N, ZOU D L, RAO Z S, et al. Analysis on exciting force of open water pump-jet and submarine with pump-jet[J]. Ship & Ocean Engineering, 2019, 48(4): 96–101 (in Chinese). doi: 10.3963/j.issn.1671-7953.2019.04.022
    [13] 姜汉. 泵喷推进器激振力特性数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    JIANG H. Numerical analysis of exciting force characteristic for pump jet propulsor[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [14] KOBAYASHI T. Large Eddy simulation for engineering applications[J]. Fluid Dynamics Research, 2006, 38(2/3): 84–107.
    [15] GEURTS B J, HOLM D D. Commutator errors in large-eddy simulation[J]. Journal of Physics A: Mathematical and General, 2006, 39(9): 2213–2229. doi: 10.1088/0305-4470/39/9/015
    [16] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models using an accurately simulated turbulent flow[J]. Journal of Fluid Mechanics, 1979, 91(1): 1–16. doi: 10.1017/S002211207900001X
    [17] MCMILLAN O J, FERZIGER J H. Direct testing of subgrid-scale models[J]. AIAA Journal, 1979, 17(12): 1340–1340. doi: 10.2514/3.61313
    [18] FELTEN F, FAUTRELLE Y, TERRAIL Y D, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods[J]. Applied Mathematical Modelling, 2004, 28(1): 15–27. doi: 10.1016/S0307-904X(03)00116-1
    [19] SMIRNOV A, SHI S, CELIK I. Random flow generation technique for large eddy simulations and particle-dynamics modeling[J]. Journal of Fluids Engineering, 2001, 123(2): 359–371. doi: 10.1115/1.1369598
    [20] KRAICHNAN R H. Diffusion by a random velocity field[J]. The Physics of Fluids, 1970, 13(1): 22–31. doi: 10.1063/1.1692799
    [21] 王力. 湍流进流诱发的螺旋桨轴系统随机振动特性分析[D]. 上海: 上海交通大学, 2017.

    WANG L. Random vibration of propeller-shaft system induced by inflow turbulence[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
    [22] 蒲汲君, 周其斗, 孟庆昌. 湍流中螺旋桨激振力宽频谱及参数影响研究[J]. 船舶力学, 2020, 24(1): 1–7. doi: 10.3969/j.issn.1007-7294.2020.01.001

    PU J J, ZHOU Q D, MENG Q C. Study of propeller broadband thrust spectrum and the effects of coefficient in turbulence[J]. Journal of Ship Mechanics, 2020, 24(1): 1–7 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.01.001
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  282
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-04-02
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回