Creep behavior analysis of conical observation window for human occupied vehicle based on ABAQUS
-
摘要:
目的 观察窗作为载人潜水器(HOV)人员和结构安全的核心部件,准确计算其长周期载荷作用下的结构蠕变性能极其重要。 方法 首先,基于观察窗树脂玻璃材料(丙烯酸塑料材料)拉伸试件蠕变测试数据结果,通过多参数比较优化方法确定时效硬化蠕变模型的基本参数;然后,通过ABAQUS进行观察窗结构建模,耦合时效硬化模型和结构接触,以进行结构蠕变性能分析;最后,基于有限元模型开展观察窗结构多参数和不同加载速度下结构蠕变行为研究。 结果 计算结果表明,无论是计算验证模型还是实物观察窗结构,数值计算与实验测试结果均具有很好的一致性,揭示了高压载荷下观察窗结构蠕变模型的可靠性,且基于时效硬化蠕变模型的数值计算结果更符合观察窗结构真实的力学行为和实际工程应用;参数化优化下锥角为70°的观察窗的结构更加合理、优化,结构的应力水平和蠕变性能更优;高压作用下观察窗高压面中心附近出现的“凹坑”以及窗体内部的“剥离”等现象正是结构蠕变响应的结果。 结论 基于ABAQUS蠕变模型分析观察窗结构的蠕变行为研究准确、可靠,可为载人潜水器的设计优化和寿命分析提供理论参考。 Abstract:Objectives The observation window is the most important component of a human occupied vehicle (HOV) for personnel and structural safety. As such, it is extremely important to accurately calculate its creep performance under long-period loads. Methods First, based on the tensile specimen creep test data, when the specimen and observation window material is polymethyl methacrylate (PMMA), the basic parameters of the age hardening creep model are determined using a multi-parameter comparison and optimization method with reference to the test curves. The observation window structure is then modeled through ABAQUS. Coupled with the age hardening model and structural contact, the creep performance of the window structure is analyzed. Finally, based on the presented finite element model, the creep behavior of the observation window structure under the multi-parameter structure and different loading rates is carried out respectively. Results The calculation results show that the numerical and experimental test results are in good agreement under both the calculation verification model and physical observation window structure, revealing the reliability of the observation window structure creep model under high-pressure load. Based on age hardening, the numerical results of the creep model are in higher agreement with the real mechanical behavior of the observation window structure and actual engineering applications. The structure of the observation window with a conical angle of 70° under parametric optimization is more reasonable and optimized, and the stress level and creep performance of the structure are better. Under high pressure, the phenomena of "pits" near the center of the high-pressure surface of the observation window and "peeling" inside the window are the result of the structural creep response. Conclusions The results of this study on the creep behavior of the observation window structure based on the ABAQUS creep model are accurate and reliable, providing theoretical references for the design optimization and life analysis of manned submersibles. -
参数 数值 弹性模量/MPa 2 760 泊松比 0.38 密度/(kg·m−3) 1 190 表 2 确定参数的取点方式及其解
Table 2. Point selecting schemes and solution of determined parameters
取点参数(t/s,σ/ MPa,ε/10−6) A n m 前端取点 (208,30,12 358),(208,35,14 191),(115,40,16 460),(620,40,18 389) 1.27×10−4 0.89 −0.934 中部取点 (1 000,30,13 520),(1 000,35,15 740),(1 200,40,19 950),(5 200,40,23 580) 3.5×10−5 0.98 −0.89 后端取点 (7 400,35,19 971),(7 400,40,25 258),(7 200,40,25 140),(8 000,40,25 653) 4.23×10−11 1.75 −0.81 -
[1] 吴时国, 罗永康. 关于我国发展载人深潜器的建议[J]. 海洋科学, 2001, 25(11): 23–24. doi: 10.3969/j.issn.1000-3096.2001.11.008WU S G, LUO Y K. Suggestions on China's development of manned deep-sea submersible[J]. Marine Sciences, 2001, 25(11): 23–24 (in Chinese). doi: 10.3969/j.issn.1000-3096.2001.11.008 [2] 布什毕 R F. 载人潜水器[M]. 黄孟南, 李锡英, 译. 北京: 海洋出版社, 1982.BUSBY R F. The manned submersible[M]. HUANG M N, LI X Y, trans. Beijing: The Ocean Press, 1982 (in Chinese). [3] ASME. Safety standard for pressure vessels for human occupancy: PVHO-1-2016[S]. New York: American Society of Mechanical Engineers, 2016. [4] STACHIW J D. Handbook of acrylics for submersibles, hyperbaric chambers and aquaria[M]. Florida, Flagstaff: Best Publishing Company, 2003. [5] 刘道启, 胡勇, 田常录, 等. 深海耐压结构观察窗应力分析[J]. 船舶力学, 2010, 14(1): 121–125. doi: 10.3969/j.issn.1007-7294.2010.01.016LIU D Q, HU Y, TIAN C L, et al. Stress analysis on deep-sea structure's viewport windows[J]. Journal of Ship Mechanics, 2010, 14(1): 121–125 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.01.016 [6] 黄浔, 韩端锋, 刘峰, 等. 载人潜器锥台形观察窗蠕变特性分析[J]. 哈尔滨工程大学学报, 2019, 40(1): 12–19.HUANG X, HAN D F, LIU F, et al. Creep analysis of the conical frustum window of the manned submersible[J]. Journal of Harbin Engineering University, 2019, 40(1): 12–19 (in Chinese). [7] 田常录, 胡勇, 刘道启, 等. 深海耐压结构观察窗蠕变变形分析[J]. 船舶力学, 2010, 14(5): 526–532. doi: 10.3969/j.issn.1007-7294.2010.05.011TIAN C L, HU Y, LIU D Q, et al. Creep analysis on deep-sea structure's viewport windows[J]. Journal of Ship Mechanics, 2010, 14(5): 526–532 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.05.011 [8] 杜青海, 王嫘, 崔维成. 锥边球扇形观察窗结构的协调性分析[J]. 船舶力学, 2011, 15(1/2): 101–108.DU Q H, WANG L, CUI W C. Structural compatibility analysis of spherical sector view-port with conical seat[J]. Journal of Ship Mechanics, 2011, 15(1/2): 101–108 (in Chinese). [9] DU Q H, HU Y, CUI W C. Safety assessment of the acrylic conical frustum viewport structure for a deep-sea manned submersible[J]. Ships and Offshore Structures, 2017, 12(Supp1): S221–S229. [10] 杜青海, 高睿, 崔维成. 全海深载人潜水器厚观察窗结构的强度研究[J]. 中国造船, 2019, 60(2): 1–12. doi: 10.3969/j.issn.1000-4882.2019.02.001DU Q H, GAO R, CUI W C. Strength analysis of thick conical window for full ocean deep manned submersible[J]. Shipbuilding of China, 2019, 60(2): 1–12 (in Chinese). doi: 10.3969/j.issn.1000-4882.2019.02.001 [11] LUO W B, WANG C H, HU X L, et al. Long-term creep assessment of viscoelastic polymer by time-temperature-stress superposition[J]. Acta Mechanica Solida Sinica, 2012, 25(6): 571–578. doi: 10.1016/S0894-9166(12)60052-4 [12] 穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 11-16.MU X Y. Creep mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1990: 11-16 (in Chinese). -
ZG2247_en.pdf
-