留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散模块梁单元水弹性理论的复杂连接处建模方法

陈永强 张宇 张显涛

陈永强, 张宇, 张显涛. 基于离散模块梁单元水弹性理论的复杂连接处建模方法[J]. 中国舰船研究, 2022, 17(1): 117–125, 146 doi: 10.19693/j.issn.1673-3185.02230
引用本文: 陈永强, 张宇, 张显涛. 基于离散模块梁单元水弹性理论的复杂连接处建模方法[J]. 中国舰船研究, 2022, 17(1): 117–125, 146 doi: 10.19693/j.issn.1673-3185.02230
CHEN Y Q, ZHANG Y, ZHANG X T. Modelling methods for complex interconnection of very large floating structures based on discrete-module-beam hydroelasticity theory[J]. Chinese Journal of Ship Research, 2022, 17(1): 117–125, 146 doi: 10.19693/j.issn.1673-3185.02230
Citation: CHEN Y Q, ZHANG Y, ZHANG X T. Modelling methods for complex interconnection of very large floating structures based on discrete-module-beam hydroelasticity theory[J]. Chinese Journal of Ship Research, 2022, 17(1): 117–125, 146 doi: 10.19693/j.issn.1673-3185.02230

基于离散模块梁单元水弹性理论的复杂连接处建模方法

doi: 10.19693/j.issn.1673-3185.02230
基金项目: 上海市浦江人才计划资助(19PJ1405400); 海洋工程国家重点实验室自主研究课题(GKZD010077); 海岸和近海工程国家重点实验室开放基金资助(LP2019);三亚崖州湾科技城2020年重点项目资助(SKJC-2020-01-006);海南省自然科学基金资助(520QN290)。
详细信息
    作者简介:

    陈永强,男,1999年生,硕士生。研究方向:超大型浮体的水弹性响应理论与应用。E-mail:CHEN.Y.Q@sjtu.edu.cn

    张宇,男,1997年生,硕士生。研究方向:超大型浮体的水弹性响应理论与应用。E-mail:skinnyoctopus@sjtu.edu.cn

    张显涛,男,1991年生,博士,副教授,博士生导师。研究方向:海洋波浪能开发利用技术,超大型浮式结构物动力响应理论与实验,深远海渔业养殖装备。E-mail:zhxt@sjtu.edu.cn

    通信作者:

    张显涛

  • 中图分类号: U661.4

Modelling methods for complex interconnection of very large floating structures based on discrete-module-beam hydroelasticity theory

知识共享许可协议
基于离散模块梁单元水弹性理论的复杂连接处建模方法陈永强,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  在离散模块−梁单元(DMB)水弹性理论框架下,提出针对连接形式复杂的超大型浮体结构(VLFS)的新的建模方法,并与已有方法进行对比分析。  方法  首先,概述基于DMB的水弹性分析方法,给出求解连续VLFS结构在波浪作用下的动力响应步骤;然后,针对VLFS复杂连接处进行建模,通过定义连接处的刚度矩阵,对与连接处相邻的两个集中质量间的力与位移关系进行修正,获得新的结构刚度矩阵和受力矩阵,并求解水弹性方程;最后,探究在弯曲刚度变化时采用4种方法求得的VLFS结构动力响应的变化趋势,分析各方法存在差异的原因。  结果  结果表明,4种建模方法都可以准确地计算出连接形式复杂的VLFS结构水弹性响应。  结论  所述建模方法可以用于计算多铰接或具有断裂位置的非连续VLFS结构的动力响应,并可拓展DMB方法的应用范围。
  • 图  在DMB理论框架下的连续型弹性浮体建模原理图

    Figure  1.  Modelling of a continuous elastic floating structure in the framework of DMB hydroelasticity theory

    图  梁单元e与子单元f示意图

    Figure  2.  Schematic of a beam element e and a sub-element f

    图  在DMB理论框架下的两模块超大型浮体连接处建模原理图

    Figure  3.  Schematic of modelling interface of a two-modules-interconnected VLFS in the framework of DMB hydroelasticity theory

    图  在DMB理论框架下的两模块弹性连接处及其附近的集中质量[10]

    Figure  4.  Schematic of the interface of elastically-interconnected modules and its two adjacent lumped masses in the framework of DMB hydroelasticity theory[10]

    图  在DMB理论框架下多模块铰接处建模的子结构法原理图

    Figure  5.  Schematic of modelling the hinged interconnection by substructure approach in the framework of DMB hydroelasticity theory

    图  文献[13]研究的两模块铰接的超大型浮体

    Figure  6.  Schematic of two-modules-hinged VLFS in Ref. [13]

    图  不同方法计算得到的结果对比

    Figure  7.  Comparison of calculated results by different methods

    图  不同弯曲刚度下超大型浮体垂向位移和弯矩分布

    Figure  8.  Distribution of vertical displacement and bending moment along the hinged VLFS under different bending stiffnesses

    图  铰接处相邻子模块重心处的垂向位移、剪力和弯矩之间的差值随弯曲刚度的变化曲线

    Figure  9.  Variation of the D-values between two adjacent sub-modules gravity center's vertical displacement, shear force and bending moment

    图  10  铰接连接处的结构受力示意图

    Figure  10.  Schematic of the loads near the structure at the hinged position

    图  11  子模块端面处的剪力

    Figure  11.  The vertical shear force at the interface of each discretized submodules

    表  4种不同的连接处建模方法比较

    Table  1.  Comparison of modelling the interconnections by different approaches

    建模方法运动方程
    系数矩阵维度
    连接处及其附近集中质量间
    的结构变形假设
    虚拟刚度法$ {\text{6}}N \times 6N $刚性假设
    限制矩阵法$ \left( {6N + 5h} \right) \times \left( {6N + 5h} \right) $刚性假设
    子结构法$ {\text{6}}N \times 6N $弹性假设
    全节点法$ \left( {6N + 12h} \right) \times \left( {6N + 12h} \right) $弹性假设
    注:$ N $为DMB水弹性分析方法中的离散子模块(或集中质量)数目,
    h 为多模块弹性浮体的连接处数目。
    下载: 导出CSV

    表  两模块铰接超大型浮体的尺度及波浪参数 [13]

    Table  2.  Parameters of waves and two-modules-hinged VLFS [13]

    波浪和VLFS参数取值
    VLFS的长度L/ m300
    VLFS的宽度B/ m60
    VLFS的高度H/ m2
    VLFS的吃水D/ m0.5
    VLFS垂向弯曲刚度EI/ (N·m2)4.77×1011
    水深d/ m58.5
    VLFS的质量/kg9.225×106
    铰接处位置距VLFS左端的距离/ m150
    波浪幅值A/ m1
    波浪入射角φ/( °)0
    下载: 导出CSV
  • [1] WANG C M, TAY Z Y. Very large floating structures: applications, research and development[J]. Procedia Engineering, 2011, 14: 62–72. doi: 10.1016/j.proeng.2011.07.007
    [2] PRICE W G, WU Y S. Hydroelasticity of marine structures[M]. North Holland: Elsevier Science Publishers, 1985: 311-337.
    [3] KHABAKHPASHEVA T I, KOROBKIN A A. Hydroelastic behaviour of compound floating plate in waves[J]. Journal of Engineering Mathematics, 2002, 44(1): 21–40. doi: 10.1023/A:1020592414338
    [4] SENJANOVIĆ I, MALENICA Š, TOMAŠEVIĆ S. Investigation of ship hydroelasticity[J]. Ocean Engineering, 2008, 35(5–6): 523–535. doi: 10.1016/j.oceaneng.2007.11.008
    [5] LOUKOGEORGAKI E, MICHAILIDES C, ANGELIDES D C. Hydroelastic analysis of a flexible mat-shaped floating breakwater under oblique wave action[J]. Journal of Fluids and Structures, 2012, 31: 103–124. doi: 10.1016/j.jfluidstructs.2012.02.011
    [6] DING J, WU Y S, ZHOU Y, et al. A direct coupling analysis method of hydroelastic responses of VLFS in complicated ocean geographical environment[J]. Journal of Hydrodynamics, 2019, 31(3): 582–593. doi: 10.1007/s42241-019-0047-8
    [7] LU D, FU S X, ZHANG X T, et al. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships and Offshore Structures, 2019, 14(4): 354–362. doi: 10.1080/17445302.2016.1186332
    [8] SUN Y G, LU D, XU J, et al. A study of hydroelastic behavior of hinged VLFS[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 170–179. doi: 10.1016/j.ijnaoe.2017.05.002
    [9] ZHANG X T, LU D. An extension of a discrete-module-beam-bending-based hydroelasticity method for a flexible structure with complex geometric features[J]. Ocean Engineering, 2018, 163: 22–28. doi: 10.1016/j.oceaneng.2018.05.050
    [10] ZHANG X T, LU D, GAO Y, et al. A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads[J]. Ocean Engineering, 2018, 164: 332–349. doi: 10.1016/j.oceaneng.2018.06.058
    [11] WEI W, FU S X, MOAN T, et al. A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions[J]. Marine Structures, 2018, 57: 180–192. doi: 10.1016/j.marstruc.2017.10.008
    [12] JIN C, BAKTI F P, KIM M. Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves[J]. Applied Ocean Research, 2020, 101: 102276. doi: 10.1016/j.apor.2020.102276
    [13] FU S X, MOAN T, CHEN X J, et al. Hydroelastic analysis of flexible floating interconnected structures[J]. Ocean Engineering, 2007, 34(11–12): 1516–1531. doi: 10.1016/j.oceaneng.2007.01.003
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  198
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-03-11
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回