留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨域无人平台水面垂直起飞动态特性数值模拟

邱磊 郑巢生

邱磊, 郑巢生. 跨域无人平台水面垂直起飞动态特性数值模拟[J]. 中国舰船研究, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229
引用本文: 邱磊, 郑巢生. 跨域无人平台水面垂直起飞动态特性数值模拟[J]. 中国舰船研究, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229
QIU L, ZHENG C S. Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water[J]. Chinese Journal of Ship Research, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229
Citation: QIU L, ZHENG C S. Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water[J]. Chinese Journal of Ship Research, 2022, 17(1): 51–59 doi: 10.19693/j.issn.1673-3185.02229

跨域无人平台水面垂直起飞动态特性数值模拟

doi: 10.19693/j.issn.1673-3185.02229
详细信息
    作者简介:

    邱磊,男,1989年生,硕士,工程师

    郑巢生,男,1987年生,硕士,高级工程师

    通信作者:

    郑巢生

  • 中图分类号: U661.31+3

Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water

知识共享许可协议
跨域无人平台水面垂直起飞动态特性数值模拟邱磊,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在研究跨域无人平台从水面垂直起飞过程中平台的运动及动力学特性。  方法  采用黏流CFD方法结合重叠网格技术和多自由度DFBI (dynamic fluid body interaction)运动模型,针对跨域无人平台在水面垂直起飞至空中的跨域过程的动态特性,开展数值模拟研究。  结果  模拟结果显示:在垂直起飞过程中,受无人平台上升阻力的影响,空气螺旋桨需要以相对于单桨等拉力状态更高的转速才能将无人平台拉起升离水面,且无人平台的主运动为垂向上升运动;此外,因空气螺旋桨的下洗气流与无人平台机身的耦合作用,导致平台出现了“快速低头”现象。  结论  由模拟结果可知,为保证无人平台顺利升空,在从水面至空中的垂直起飞阶段必须加入手动或自动的控制程序,以实时调整推进器的倾转角度,从而为后续跨域无人平台优化设计及控制提供有力的评估手段。
  • 图  一种跨域无人平台

    Figure  1.  A trans-media unmanned vehicle

    图  数值模拟计算域

    Figure  2.  Computational domain for numerical simulation

    图  计算域总体网格

    Figure  3.  Total grids of computational domain

    图  重叠区域网格

    Figure  4.  Local grids of overset zone

    图  二叶商用空气螺旋桨

    Figure  5.  The two-bladed commercial air propeller

    图  空气螺旋桨气动力计算网格

    Figure  6.  The surface grids of air propeller for aerodynamic performance calculation

    图  自由度方向及参考点示意图

    Figure  7.  The schematic diagram of direction of freedom degree and reference points

    图  N=2 352 r/min时的垂向位移分量

    Figure  8.  The vertical displacement components at N=2 352 r/min

    图  N=2 352 r/min时的单个螺旋桨拉力

    Figure  9.  The single air propeller pull force at N=2 352 r/min

    图  10  N=2 840 r/min时的垂向位移分量

    Figure  10.  The vertical displacement components at N=2 840 r/min

    图  11  N=2 840 r/min时的垂向速度分量

    Figure  11.  The vertical velocity components at N=2 840 r/min

    图  12  N=2 840 r/min时的空气螺旋桨拉力

    Figure  12.  The air propeller pull force at N=2 840 r/min

    图  13  N=2 840 r/min时的无人平台垂向受力

    Figure  13.  The vertical components of force on unmanned vehicle at N=2 840 r/min

    图  14  t=0.4 s时螺旋桨表面压力系数分布

    Figure  14.  The pressure coefficient distribution on air propeller surface at t=0.4 s

    图  15  t=0.85 s时螺旋桨表面压力系数分布

    Figure  15.  The pressure coefficient distribution on air propeller surface at t=0.85 s

    图  16  t=0.4 s时无人平台上表面压力系数分布

    Figure  16.  The pressure coefficient distribution on the upper surface of unmanned vehicle at t=0.4 s

    图  17  t=0.85 s时无人平台上表面压力系数分布

    Figure  17.  The pressure coefficient distribution on the upper surface of unmanned vehicle at t=0.85 s

    图  18  t=0.4 s时自由液面波高分布

    Figure  18.  The wave height distribution on free surface at t =0.4 s

    图  19  t=0.4 s时无人平台下表面压力系数分布

    Figure  19.  The pressure coefficient distribution on the lower surface of unmanned vehicle at t =0.4 s

    图  20  t=0.85 s时自由液面波高分布

    Figure  20.  The wave height distribution on free surface at t =0.85 s

    图  21  t=0.85 s时无人平台下表面压力系数分布

    Figure  21.  The pressure coefficient distribution on the lower surface of unmanned vehicle at t =0.85 s

    图  22  N=2 840 r/min时的水平位移分量

    Figure  22.  The horizontal displacement components at N=2 840 r/min

    图  23  N=2 840 r/min时的水平速度分量

    Figure  23.  The horizontal velocity components at N=2 840 r/min

    图  24  N=2 840 r/min时平台的水平受力

    Figure  24.  The horizontal components of force on unmanned vehicle at N=2 840 r/min

    图  25  N=2 840 r/min时无人平台的俯仰角度

    Figure  25.  The pitch angle of unmanned vehicle at N=2 840 r/min

    图  26  N=2 840 r/min时无人平台的俯仰力矩

    Figure  26.  The pitch moment of unmanned vehicle at N=2 840 r/min

    图  27  N=2 840 r/min,t=1.6 s时无人平台表面压力分布

    Figure  27.  The pressure distribution on the surface of unmanned vehicle at N=2 840 r/min and t=1.6 s

    表  某型二叶商用空气螺旋桨性能试验值与数值计算值

    Table  1.  The experimental and numerical values of aerodynamic performance of a two-bladed commercial air propeller

    转速N/(r·min−1)拉力T/N拉力系数KT /N偏差/%
    厂商数据计算值厂商数据计算值
    1 2006.976.790.0730.071−2.58
    1 92019.4218.490.0800.076−4.79
    下载: 导出CSV

    表  不同转速下单个三叶空气螺旋桨的拉力、扭矩与功率

    Table  2.  The pull force, torque and power of a three-bladed air propeller at different rotation speeds

    上升速度
    V/(m·s−1)
    桨叶直径
    D/m
    转速N
    /(r·min−1)
    进速
    系数J
    拉力
    T/N
    扭矩
    Q/(N·m)
    功率
    Pw /W
    11.21 6000.031133.5410.401 742.99
    11.21 8000.028169.8313.152 478.62
    11.22 0000.025210.5116.223 396.42
    11.22 2000.023255.5619.604 516.44
    11.22 4000.021304.9923.315 858.64
    11.22 5000.020331.3625.286 619.41
    下载: 导出CSV
  • [1] 张军, 高德宝, 曹耀初, 等. 水中−空中跨介质航行器研究进展[C]//水下发射学组2018年学术会议论文集. 舟山, 2018: 231−238.

    ZHANG J, GAO D B, CAO Y C, et al. Study on development of water-air trans-media vehicle[C]//Proceedings of CSNAME Conference on Underwater Launch 2018. Zhoushan, China, 2018: 231−238 (in Chinese).
    [2] 吝科, 冯金富, 张晓强, 等. 升力型潜水飞行器水空动力学特性研究[J]. 舰船科学技术, 2014, 36(9): 94–97, 105. doi: 10.3404/j.issn.1672-7649.2014.09.019

    LIN K, FENG J F, ZHANG X Q, et al. Research on the aerodynamic/hydrodynamic characteristic of lifting submersible aircraft[J]. Ship Science and Technology, 2014, 36(9): 94–97, 105 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.09.019
    [3] 齐赞强. 一种新构型倾转四旋翼无人机的气动特性分析[D]. 南京: 南京航空航天大学, 2016.

    QI Z Q. Aerodynamic characteristics analysis of a tilt-quadrotor with new configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
    [4] 吴江, 刘远强, 高峰, 等. 一种倾转旋翼无人机螺旋桨的设计及性能分析[J]. 沈阳航空航天大学学报, 2018, 35(3): 27–31, 46. doi: 10.3969/j.issn.2095-1248.2018.03.004

    WU J, LIU Y Q, GAO F, et al. Design and performance analysis of propeller for a tilt rotor UAV[J]. Journal of Shenyang Aerospace University, 2018, 35(3): 27–31, 46 (in Chinese). doi: 10.3969/j.issn.2095-1248.2018.03.004
    [5] 邓见, 金楠, 周意琦, 等. 仿飞鱼跨介质无人平台的探索研究[J]. 水动力学研究与进展(A辑), 2020, 35(1): 55–60.

    DENG J, JIN N, ZHOU Y Q, et al. Preliminary study on aerial-aquatic unmanned vehicle mimicking flying fish[J]. Chinese Journal of Hydrodynamics (Ser.A), 2020, 35(1): 55–60 (in Chinese).
    [6] 廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44–47, 57.

    LIAO B Q, FENG J F, QI D, et al. Aerodynamic and hydrodynamic characteristics analysis of morphing submersible aerial vehicle[J]. Flight Dynamics, 2016, 34(3): 44–47, 57 (in Chinese).
    [7] 魏洪亮, 陆宏志, 赵静, 等. 水下发射航行体跨介质动态载荷预报研究[J]. 导弹与航天运载技术, 2016(2): 77–80.

    WEI H L, LU H Z, ZHAO J, et al. Study on dynamic load prediction of trans-media underwater launching vehicle[J]. Missiles and Space Vehicles, 2016(2): 77–80 (in Chinese).
    [8] 谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104–121.

    TAN J Y, HU J H, CHEN G M, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104–121 (in Chinese).
    [9] 杜特专, 黄仁芳, 王畅. 跨介质航行器弹性舵翼空化流固耦合仿真分析[J]. 宇航总体技术, 2020, 4(3): 28–33.

    DU T Z, HUANG R F, WANG C. Numerical investigations into the cavitation fluid-solid coupling for elastic rudder wings of aerial-aquatic vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 28–33 (in Chinese).
    [10] 贾力平, 康顺. 基于FINE/Marine的跨介质航行器数值模拟[J]. 计算机辅助工程, 2011, 20(3): 97–101. doi: 10.3969/j.issn.1006-0871.2011.03.020

    JIA L P, KANG S. Numerical simulation on cross-media crafts based on FINE/Marine software[J]. Computer Aided Engineering, 2011, 20(3): 97–101 (in Chinese). doi: 10.3969/j.issn.1006-0871.2011.03.020
    [11] 谭骏怡, 胡俊华, 颜奇民, 等. 共性半环翼跨介质航行器变体气动特性研究[J]. 飞行力学, 2020, 38(1): 1–7.

    TAN J Y, HU J H, YAN Q M, et al. Study on aerodynamic characteristics of conformal semi-ring wing trans-medium vehicle variants[J]. Flight Dynamics, 2020, 38(1): 1–7 (in Chinese).
    [12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
    [13] OHMORI T. Finite-volume simulation of flows about a ship in maneuvering motion[J]. Journal of Marine Science and Technology, 1998, 3(2): 82–93. doi: 10.1007/BF02492563
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  1137
  • HTML全文浏览量:  361
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-04-26
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回