Numerical simulation of dynamic performance of trans-media unmanned vehicle during vertical take-off from water
-
摘要:
目的 旨在研究跨域无人平台从水面垂直起飞过程中平台的运动及动力学特性。 方法 采用黏流CFD方法结合重叠网格技术和多自由度DFBI (dynamic fluid body interaction)运动模型,针对跨域无人平台在水面垂直起飞至空中的跨域过程的动态特性,开展数值模拟研究。 结果 模拟结果显示:在垂直起飞过程中,受无人平台上升阻力的影响,空气螺旋桨需要以相对于单桨等拉力状态更高的转速才能将无人平台拉起升离水面,且无人平台的主运动为垂向上升运动;此外,因空气螺旋桨的下洗气流与无人平台机身的耦合作用,导致平台出现了“快速低头”现象。 结论 由模拟结果可知,为保证无人平台顺利升空,在从水面至空中的垂直起飞阶段必须加入手动或自动的控制程序,以实时调整推进器的倾转角度,从而为后续跨域无人平台优化设计及控制提供有力的评估手段。 Abstract:Objectives This paper aims to study the kinetic and dynamic characteristics of an trans-media unmanned vehicle during vertical take-off from water. Methods Its dynamic performance during the trans-media process from water to air is numerically simulated on the basis of the viscous computational fluid dynamics (CFD) approach combined with the overset grid technique, multiple degrees of freedom and dynamic fluid body interaction (DFBI) motion model. Results The results show that in order to pull the vehicle up, the air propeller rotation speed should be higher than the speed at the same pull force provided by a single propeller. As the main movement of the vehicle is vertically upward, the coupling of the air propeller downwash flow velocity and the fuselage of the vehicle leads to the "quick bowing" phenomenon. Conclusions To ensure smooth take-off, a manual or automatic control program should be added to adjust the tilt angle of the thrusters in real time during the take-off process. This study provides a powerful evaluation method for the optimal design and control of trans-media unmanned vehicle in the future. -
表 1 某型二叶商用空气螺旋桨性能试验值与数值计算值
Table 1. The experimental and numerical values of aerodynamic performance of a two-bladed commercial air propeller
转速N/(r·min−1) 拉力T/N 拉力系数KT /N 偏差/% 厂商数据 计算值 厂商数据 计算值 1 200 6.97 6.79 0.073 0.071 −2.58 1 920 19.42 18.49 0.080 0.076 −4.79 表 2 不同转速下单个三叶空气螺旋桨的拉力、扭矩与功率
Table 2. The pull force, torque and power of a three-bladed air propeller at different rotation speeds
上升速度
V/(m·s−1)桨叶直径
D/m转速N
/(r·min−1)进速
系数J拉力
T/N扭矩
Q/(N·m)功率
Pw /W1 1.2 1 600 0.031 133.54 10.40 1 742.99 1 1.2 1 800 0.028 169.83 13.15 2 478.62 1 1.2 2 000 0.025 210.51 16.22 3 396.42 1 1.2 2 200 0.023 255.56 19.60 4 516.44 1 1.2 2 400 0.021 304.99 23.31 5 858.64 1 1.2 2 500 0.020 331.36 25.28 6 619.41 -
[1] 张军, 高德宝, 曹耀初, 等. 水中−空中跨介质航行器研究进展[C]//水下发射学组2018年学术会议论文集. 舟山, 2018: 231−238.ZHANG J, GAO D B, CAO Y C, et al. Study on development of water-air trans-media vehicle[C]//Proceedings of CSNAME Conference on Underwater Launch 2018. Zhoushan, China, 2018: 231−238 (in Chinese). [2] 吝科, 冯金富, 张晓强, 等. 升力型潜水飞行器水空动力学特性研究[J]. 舰船科学技术, 2014, 36(9): 94–97, 105. doi: 10.3404/j.issn.1672-7649.2014.09.019LIN K, FENG J F, ZHANG X Q, et al. Research on the aerodynamic/hydrodynamic characteristic of lifting submersible aircraft[J]. Ship Science and Technology, 2014, 36(9): 94–97, 105 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.09.019 [3] 齐赞强. 一种新构型倾转四旋翼无人机的气动特性分析[D]. 南京: 南京航空航天大学, 2016.QI Z Q. Aerodynamic characteristics analysis of a tilt-quadrotor with new configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). [4] 吴江, 刘远强, 高峰, 等. 一种倾转旋翼无人机螺旋桨的设计及性能分析[J]. 沈阳航空航天大学学报, 2018, 35(3): 27–31, 46. doi: 10.3969/j.issn.2095-1248.2018.03.004WU J, LIU Y Q, GAO F, et al. Design and performance analysis of propeller for a tilt rotor UAV[J]. Journal of Shenyang Aerospace University, 2018, 35(3): 27–31, 46 (in Chinese). doi: 10.3969/j.issn.2095-1248.2018.03.004 [5] 邓见, 金楠, 周意琦, 等. 仿飞鱼跨介质无人平台的探索研究[J]. 水动力学研究与进展(A辑), 2020, 35(1): 55–60.DENG J, JIN N, ZHOU Y Q, et al. Preliminary study on aerial-aquatic unmanned vehicle mimicking flying fish[J]. Chinese Journal of Hydrodynamics (Ser.A), 2020, 35(1): 55–60 (in Chinese). [6] 廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44–47, 57.LIAO B Q, FENG J F, QI D, et al. Aerodynamic and hydrodynamic characteristics analysis of morphing submersible aerial vehicle[J]. Flight Dynamics, 2016, 34(3): 44–47, 57 (in Chinese). [7] 魏洪亮, 陆宏志, 赵静, 等. 水下发射航行体跨介质动态载荷预报研究[J]. 导弹与航天运载技术, 2016(2): 77–80.WEI H L, LU H Z, ZHAO J, et al. Study on dynamic load prediction of trans-media underwater launching vehicle[J]. Missiles and Space Vehicles, 2016(2): 77–80 (in Chinese). [8] 谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104–121.TAN J Y, HU J H, CHEN G M, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104–121 (in Chinese). [9] 杜特专, 黄仁芳, 王畅. 跨介质航行器弹性舵翼空化流固耦合仿真分析[J]. 宇航总体技术, 2020, 4(3): 28–33.DU T Z, HUANG R F, WANG C. Numerical investigations into the cavitation fluid-solid coupling for elastic rudder wings of aerial-aquatic vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 28–33 (in Chinese). [10] 贾力平, 康顺. 基于FINE/Marine的跨介质航行器数值模拟[J]. 计算机辅助工程, 2011, 20(3): 97–101. doi: 10.3969/j.issn.1006-0871.2011.03.020JIA L P, KANG S. Numerical simulation on cross-media crafts based on FINE/Marine software[J]. Computer Aided Engineering, 2011, 20(3): 97–101 (in Chinese). doi: 10.3969/j.issn.1006-0871.2011.03.020 [11] 谭骏怡, 胡俊华, 颜奇民, 等. 共性半环翼跨介质航行器变体气动特性研究[J]. 飞行力学, 2020, 38(1): 1–7.TAN J Y, HU J H, YAN Q M, et al. Study on aerodynamic characteristics of conformal semi-ring wing trans-medium vehicle variants[J]. Flight Dynamics, 2020, 38(1): 1–7 (in Chinese). [12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149 [13] OHMORI T. Finite-volume simulation of flows about a ship in maneuvering motion[J]. Journal of Marine Science and Technology, 1998, 3(2): 82–93. doi: 10.1007/BF02492563 -