留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPH方法的M型快艇入水载荷仿真分析

杨一凡 陈三桂 周维星 张涛

杨一凡, 陈三桂, 周维星, 等. 基于SPH方法的M型快艇入水载荷仿真分析[J]. 中国舰船研究, 2022, 17(1): 154–165 doi: 10.19693/j.issn.1673-3185.02227
引用本文: 杨一凡, 陈三桂, 周维星, 等. 基于SPH方法的M型快艇入水载荷仿真分析[J]. 中国舰船研究, 2022, 17(1): 154–165 doi: 10.19693/j.issn.1673-3185.02227
YANG Y F, CHEN S G, ZHOU W X, et al. Simulation analysis on water entry loads of high-speed M-boat based on SPH method[J]. Chinese Journal of Ship Research, 2022, 17(1): 154–165 doi: 10.19693/j.issn.1673-3185.02227
Citation: YANG Y F, CHEN S G, ZHOU W X, et al. Simulation analysis on water entry loads of high-speed M-boat based on SPH method[J]. Chinese Journal of Ship Research, 2022, 17(1): 154–165 doi: 10.19693/j.issn.1673-3185.02227

基于SPH方法的M型快艇入水载荷仿真分析

doi: 10.19693/j.issn.1673-3185.02227
详细信息
    作者简介:

    杨一凡,男,1996年生,硕士生。研究方向:结构强度分析。E-mail:yangyifan961120@163.com

    张涛,男,1976年生,博士,副教授。研究方向:船体结构强度分析。 E-mail:zhangt7666@hust.edu.cn

    通信作者:

    张涛

  • 中图分类号: U661.72

Simulation analysis on water entry loads of high-speed M-boat based on SPH method

知识共享许可协议
基于SPH方法的M型快艇入水载荷仿真分析杨一凡,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为研究M型快艇典型截面结构入水过程中受到的水动力载荷,  方法  基于光滑粒子动力学(SPH)液−气两相流算法,模拟平板和弓形模型的入水过程,以验证所用算法的精确性。在此基础上,模拟M型快艇典型截面结构的入水过程,并与相关文献的试验结果进行比较。  结果  结果显示:两种结构入水过程的仿真结果与试验结果吻合较好。M型快艇入水过程中存在二次砰击现象, 即在主船体斜升角较大时会导致第1次砰击载荷较小,若斜升角过大时第2次砰击过程中结构则受到的砰击载荷会显着增加。  结论  研究结果表明,SPH两相流算法可以很好地模拟M型快艇入水过程,斜升角的设计大小应适当。
  • 图  采用SPH两相流算法的平板入水模型

    Figure  1.  Simulation model of flat plate during water entry using two-phase SPH method

    图  平板入水加速度数值仿真与试验结果对比

    Figure  2.  Comparison of acceleration between simulations and experimental results of flat plate during water entry

    图  平板入水过程中的压力云图

    Figure  3.  Pressure contours of flat plate during water entry

    图  平板试验中心点的测试压力[4]

    Figure  4.  Pressures at centre point of flat plate in test[4]

    图  弓形结构截面及SPH模型

    Figure  5.  Arched structure's cross-section and SPH model

    图  弓形结构截面的砰击载荷图

    Figure  6.  Slamming loads on the arched cross-section

    图  P1~P3测点记录的压力

    Figure  7.  Pressures recorded at three measuring points

    图  M型快艇截面示意图

    Figure  8.  Geometry of high-speed M-boat cross-section

    图  不同斜升角下M型快艇截面示意图

    Figure  9.  Diagram of high-speed M-boat cross-section with various dead-rise angles

    图  10  M型快艇截面的SPH模型

    Figure  10.  The SPH model of igh-speed M-boat cross-section

    图  11  不同粒子间距下M型快艇截面加速度(α=23°)

    Figure  11.  Calculated acceleration of high-speed M-boat cross-section with various particle spacings (α =23°)

    图  12  不同斜升角下的加速度计算结果

    Figure  12.  Calculation results of acceleration for various dead-rise angles

    图  13  不同初始入水速度下加速度计算结果与斜升角间的关系

    Figure  13.  Relationship between calculated acceleration and dead-rise angle at various initial water entry velocities

    图  14  斜升角为13°时测点记录的压力变化

    Figure  14.  Pressure histories recorded at measuring points when dead-rise angle is 13°

    图  15  斜升角为18°时测点记录的压力变化

    Figure  15.  Pressure histories recorded at measuring points when dead-rise angle is 18°

    图  16  斜升角为23°时测点记录的压力变化

    Figure  16.  Pressure histories recorded at measuring points when dead-rise angle is 23°

    图  17  斜升角为28°时测点记录的压力变化

    Figure  17.  Pressure histories recorded at measuring points when dead-rise angle is 28°

    图  18  不同斜升角下自由液面压力云图及高度

    Figure  18.  Pressure contours and free surface elevation at various dead-rise angle

    图  19  v=5 m/s时不同斜升角的加速度结果

    Figure  19.  Acceleration results for various dead-rise angle at v=5 m/s

    图  20  斜升角为28°时有/无空气的加速度结果

    Figure  20.  Acceleration results with or without air influence when dead-rise angle is 28°

    图  21  气穴

    Figure  21.  Air pocket

    图  22  三体船的入水测试图[2]

    Figure  22.  View of water entry test of trimaran [2]

    表  模拟工况

    Table  1.  The modelling conditions

    斜升角α /(°)
    13182328
    初始入水速度v /(m·s-1)57.51057.51057.51057.510
    下载: 导出CSV
  • [1] ZHANG L, ZHANG T, ZHOU W X, et al. Model experimental investigation on slamming load of high-speed M-boat[C]//2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS). Wuhan, China: IEEE, 2018: 1-6.
    [2] DAVIS M R, WHELAN J R. Computation of wet deck bow slam loads for catamaran arched cross sections[J]. Ocean Engineering, 2007, 34(17/18): 2265–2276. doi: 10.1016/j.oceaneng.2007.06.001
    [3] 曹正林, 吴卫国. 影响高速三体船连接桥砰击压力峰值因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2008, 32(1): 5–8.

    CAO Z L, WU W G. Research on factors affecting the slamming pressure peak value of trimaran cross structure[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2008, 32(1): 5–8 (in Chinese).
    [4] LIN M C, SHIEH L D. Simultaneous measurements of water impact on a two-dimensional body[J]. Fluid Dynamics Research, 1997, 19(3): 125–148. doi: 10.1016/S0169-5983(96)00033-0
    [5] von KARMAN T. The impact on seaplane floats during landing[R]. [S. l.]: National Advisory Committee for Aeronatics, 1929.
    [6] ZHAO R, FALTINSEN O M, AARSNES J V. Water entry of arbitrary two-dimensional sections with and without flow separation[C]//Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington, DC: National Academy Press, 1996: 408-423.
    [7] LEWIS S G, HUDSON D A, TURNOCK S R, et al. Impact of a free-falling wedge with water: synchronized visualization, pressure and acceleration measurements[J]. Fluid Dynamics Research, 2010, 42(3): 035509. doi: 10.1088/0169-5983/42/3/035509
    [8] 张岳青, 徐绯, 李建辰, 等. 结构物入水冲击表面压力的模型研究及应用[J]. 机械强度, 2017, 39(1): 33–39.

    ZHANG Y Q, XU F, LI J C, et al. Model study and application on surface pressure measurement of structure water entry[J]. Journal of Mechanical Strength, 2017, 39(1): 33–39 (in Chinese).
    [9] 骆寒冰, 杨宇, 谢芃, 等. 基于OpenFOAM的无转角和有转角楔形体舱段入水砰击载荷数值模拟研究[J]. 船舶力学, 2019, 23(11): 1320–1330. doi: 10.3969/j.issn.1007-7294.2019.11.006

    LUO H B, YANG Y, XIE P, et al. Numerical investigation on water impact of one free-drop wedge section considering roll angles using OpenFOAM[J]. Journal of Ship Mechanics, 2019, 23(11): 1320–1330 (in Chinese). doi: 10.3969/j.issn.1007-7294.2019.11.006
    [10] 闫蕊, 徐绯, 任选其, 等. SPH方法研究空气在平板入水中的影响[J]. 计算力学学报, 2017, 34(5): 564–569.

    YAN R, XU F, REN X Q, et al. Research on the effects of air during flat plate impacting with water using SPH method[J]. Chinese Journal of Computational Mechanics, 2017, 34(5): 564–569 (in Chinese).
    [11] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803–822. doi: 10.1016/j.jcp.2005.09.004
    [12] YAN R, MONAGHAN J J, VALIZADEH A, et al. The effect of air on solid body impact with water in two dimensions[J]. Journal of Fluids and Structures, 2015, 59: 146–164. doi: 10.1016/j.jfluidstructs.2015.08.015
    [13] CRESPO A J C, DOMÍNGUEZ J M, ROGERS B D, et al. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, 187: 204–216. doi: 10.1016/j.cpc.2014.10.004
    [14] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1): 389–396. doi: 10.1007/BF02123482
    [15] MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574. doi: 10.1146/annurev.aa.30.090192.002551
    [16] MONAGHAN J J, CAS R A F, KOS A M, et al. Gravity currents descending a ramp in a stratified tank[J]. Journal of Fluid Mechanics, 1999, 379: 39–69. doi: 10.1017/S0022112098003280
    [17] BATCHELOR G K. An Introduction to Fluid Dynamics[M]. Cambridge: Cambridge University Press, 2000.
    [18] VERLET L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98. doi: 10.1103/PhysRev.159.98
    [19] NUGENT S, POSCH H A. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4): 4968. doi: 10.1103/PhysRevE.62.4968
    [20] AARSNES J V. Drop test with ship sections-effect of roll angle[R]. Report 603834.00. 01. Trondheim, Norway: Norwegian Marine Technology Research Institute, 1996.
    [21] SUN H, FALTINSEN O M. Asymmetric water entry of a bow-flare ship section with roll angle[M]//KREUZER E. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Dordrech: Springer, 2008: 285-296.
    [22] WANG S, SOARES C G. Slam induced loads on bow-flared sections with various roll angles[J]. Ocean Engineering, 2013, 67: 45–57. doi: 10.1016/j.oceaneng.2013.04.009
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  174
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 修回日期:  2021-03-09
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回