留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系泊系统对波能发电装置动力响应的影响

连宇顺 张斌 郑金海 刘海笑 马刚

连宇顺, 张斌, 郑金海, 等. 系泊系统对波能发电装置动力响应的影响[J]. 中国舰船研究, 2022, 17(1): 80–90, 116 doi: 10.19693/j.issn.1673-3185.02223
引用本文: 连宇顺, 张斌, 郑金海, 等. 系泊系统对波能发电装置动力响应的影响[J]. 中国舰船研究, 2022, 17(1): 80–90, 116 doi: 10.19693/j.issn.1673-3185.02223
LIAN Y S, ZHANG B, ZHENG J H, et al. Effects of mooring systems on dynamic response of wave energy converter[J]. Chinese Journal of Ship Research, 2022, 17(1): 80–90, 116 doi: 10.19693/j.issn.1673-3185.02223
Citation: LIAN Y S, ZHANG B, ZHENG J H, et al. Effects of mooring systems on dynamic response of wave energy converter[J]. Chinese Journal of Ship Research, 2022, 17(1): 80–90, 116 doi: 10.19693/j.issn.1673-3185.02223

系泊系统对波能发电装置动力响应的影响

doi: 10.19693/j.issn.1673-3185.02223
基金项目: 国家自然科学基金(51609079,51979050);中央高校基本科研业务费专项资金项目(B200201002);江苏省自然科学基金面上项目 (BK20201314);天津大学水利工程仿真与安全国家重点实验室开放基金(HESS-1910)
详细信息
    作者简介:

    连宇顺,男,1987年生,博士,副研究员。研究方向:深水锚泊技术。E-mail:yushunlian@hhu.edu.cn

    张斌,男,1998年生,硕士生。研究方向:系泊技术。E-mail:zhangbin19982020@163.com

    通信作者:

    连宇顺

  • 中图分类号: U653.2; U661.1

Effects of mooring systems on dynamic response of wave energy converter

知识共享许可协议
系泊系统对波能发电装置动力响应的影响连宇顺,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了设计造价合理、性能高效的系泊系统,研究不同系泊系统对波能发电装置(WEC)的能量摄取(PTO)能力和定位性能的影响。  方法  选择一典型的两刚体点吸式WEC装置为研究对象,采用WEC-Sim和MoorDyn开源代码设计两类系泊系统,一类采用锚链,另一类采用锚链和聚酯缆绳所组成的混合缆。通过对这两类系泊系统进行时域分析计算,获得WEC位移响应以及PTO装置响应和系缆张力响应。  结果  结果表明:系泊系统对浮子位移响应的影响很小,但对Spar式底板的影响明显;对于针对线性阻尼型WEC,系泊系统对PTO响应的影响可以忽略不计;在工作海况下,混合缆系泊系统的张力比锚链系泊系统中同一位置处的更低。  结论  该研究可为波能发电装置的系泊设计提供参考。
  • 图  两刚体点吸式波能发电装置[1]

    Figure  1.  Two-body floating point absorber[1]

    图  WEC-Sim坐标系

    Figure  2.  Coordinate system of WEC-Sim

    图  WEC-Sim软件结构[24]

    Figure  3.  WEC-Sim structure [24]

    图  锚链系泊布置

    Figure  4.  Configuration of the chain mooring system

    图  混合缆系泊布置

    Figure  5.  Configuration of the integrated chain-rope mooring system

    图  波能发电装置系泊的剖面示意图[1]

    Figure  6.  Side view of the mooring configuration of WEC[1]

    图  工作海况时的波面高度(斜坡时间40 s)[38]

    Figure  7.  Wave surface elevation of an operational sea state when ramp time is 40 s [38]

    图  工作海况下2种系泊系统浮子响应的比较

    Figure  8.  Comparison of floater responses between two mooring systems under operational sea state

    图  工作海况下 2种系泊系统Spar式底板的响应比较

    Figure  9.  Comparison of Spar responses between two mooring systems under operational sea state

    图  10  工作海况下2种系泊系统中浮子与Spar式底板之间的相对运动比较

    Figure  10.  Comparison of relative motion between floater and Spar body in two mooring systems under operational sea state

    图  11  工作海况下2种系泊系统中浮子与Spar式底板之间的相互作用力(${{F}}_{\rm{PTO}}$)比较

    Figure  11.  Comparison of the interaction PTO force (${{F}}_{\rm{PTO}}$) between floater and Spar body in two mooring systems under operational sea state

    图  12  工作海况下2种系泊系统中浮子与Spar式底板之间的瞬时功率(${\mathit{P}}_{\rm{{PTO}}}$)比较

    Figure  12.  Comparison of instantaneous power (${\mathit{P}}_{\rm{PTO}}$) between floater and Spar body in two mooring systems under operational sea state

    图  13  工作海况下2种系泊系统中系缆1张力的比较

    Figure  13.  Comparison of line tension of cable-1 at fairlead in two mooring systems under operational sea state

    图  14  工作海况下不同系泊系统中系缆2张力的比较

    Figure  14.  Comparison of line tension of cable-2 at fairlead in two mooring systems under operational sea state

    图  15  极端海况下的波面高度(斜坡时间40 s)

    Figure  15.  Wave surface elevation under extreme sea state when ramp time is 40 s

    图  16  极端海况下2种系泊系统中系缆1张力的比较

    Figure  16.  Comparison of line tension of cable-1 at fairlead in two morring systems under extreme sea state

    图  17  极端海况下2种系泊系统中系缆2张力的比较

    Figure  17.  Comparison of line tension of cable-2 at fairlead in two morring systems under extreme sea state

    表  两刚体点吸式波能发电装置的主要参数

    Table  1.  Main particulars of the two-body floating point absorber

    参数浮子Spar式底板
    外直径/m206
    质量/t727.01878.3
    高度/m538
    重心坐标/m(0, 0, −0.72)(0, 0, −21.29)
    $ {I}_{xx}/ $$ (\mathrm{k}\mathrm{g}{\cdot \mathrm{m}}^{-2}) $$ 2.09\times {10}^{7} $$ 9.44\times {10}^{7} $
    $ {I}_{yy}/ $$ (\mathrm{k}\mathrm{g}{\cdot \mathrm{m}}^{-2} )$$ 2.13\times {10}^{7} $$ 9.44\times {10}^{7} $
    $ {I}_{{\textit{z}}{\textit{z}}}/ $$( \mathrm{k}\mathrm{g}{\cdot \mathrm{m}}^{-2}) $$ 3.71\times {10}^{7} $$ 2.85\times {10}^{7} $
    $ {I}_{y{\textit{z}}}/ $$( \mathrm{k}\mathrm{g}{\cdot \mathrm{m}}^{-2} )$$ 4.3\times {10}^{3} $$ 2.18\times {10}^{5} $
    下载: 导出CSV

    表  系缆主要参数

    Table  2.  Main particulars of mooring lines

    参数锚链系泊构型混合缆系泊构型
    系缆总长/ m280280
    海底接触段的锚链长度/ m24030
    连接沉子(重块)/个1
    聚酯缆绳/ m210
    连接浮标/个11
    悬挂段的锚链长度/ m4040
    下载: 导出CSV

    表  系缆各组件参数

    Table  3.  Main particulars of components of mooring lines

    系缆组件参数数值
    锚链
    (R4k4 studlink 型)
    直径/mm76
    空气中重量/(kg·m−1)126.494
    材料阻尼比0.8
    刚度/kN$ 5.83\times {10}^{5} $
    横向附加质量系数1
    切向附加质量系数0
    横向拖曳系数1.6
    切向拖曳系数0.05
    最小破断强度/kN6 001.31
    连接沉子(重块)质量$ /\mathrm{k}\mathrm{g} $7 850
    体积$ /{\mathrm{m}}^{3} $1
    聚酯缆绳直径/mm144
    空气中重量/(kg·m−1)14.4
    材料阻尼比0.3
    刚度/kN$ 2.26\times {10}^{4} $
    横向附加质量系数1
    切向附加质量系数0
    横向拖曳系数1.6
    切向拖曳系数0.05
    最小破断强度/kN5 880
    连接浮标质量$ /\mathrm{k}\mathrm{g} $122
    体积$ /{\mathrm{m}}^{3} $1
    拖曳系数和浮子投影面积的乘积0.5
    附加质量系数1
    下载: 导出CSV

    表  工作海况下波能发电装置动力响应的统计值

    Table  4.  Statistical data of the WEC under operational sea state

    响应系缆类别平均值/m标准差/m最大值/m最小值/m
    浮子纵荡/m锚链0.002 10.244 90.594 5−0.643 9
    混合缆0.003 80.250 50.614 5−0.658 4
    浮子垂荡/m锚链0.000 40.239 20.622 4−0.607 2
    混合缆0.000 40.239 20.622 2−0.607 1
    浮子纵摇/(°)锚链0.000 20.007 20.017 4−0.017 9
    混合缆0.000 20.007 10.017 0−0.017 2
    Spar式底板纵荡/m锚链0.003 10.100 70.255 8−0.309 5
    混合缆0.003 80.250 50.614 5−0.658 4
    Spar式底板垂荡/m锚链−0.114 30.029 5$ 4.79\times {10}^{-4} $−0.184 2
    混合缆−0.197 90.036 2$ 4.36\times {10}^{-7} $−0.268 0
    Spar式底板纵摇/(°)锚链0.000 20.007 20.017 4−0.017 9
    混合缆0.000 20.007 10.017 0−0.017 2
    下载: 导出CSV

    表  工作海况下波能摄取装置响应的统计值

    Table  5.  Statistical data of the PTO response under operational sea state

    系泊类型统计类型相对位移/m相对速度
    /(m·s−1)
    ${F}_{\rm{PTO} }/\rm{kN}$PPTO
    /(kN·m·s−1)
    锚链最大值0.6920.546653.67358.329
    平均值0.1156.29E-05−0.07550.570
    最小值−0.438−0.545−655.740
    混合缆最大值0.7770.546653.67358.29
    平均值0.1990.000 276−0.33150.584
    最小值−0.353−0.545−655.710
    下载: 导出CSV

    表  工作海况下2种系泊系统的导缆孔处张力统计值

    Table  6.  Statistical data of line tensions at fairlead in two mooring systems under operational sea state

    系泊类型缆号平均值/kN标准差/kN最大值/kN最小值/kN
    锚链1177.92411.095209.411151.282
    2177.9375.825193.872160.655
    3177.9375.825193.872160.655
    混合缆147.0450.76149.23044.997
    247.0360.35448.09046.047
    347.0360.35448.09046.047
    下载: 导出CSV

    表  极端海况下2种系缆的导缆孔处张力统计值

    Table  7.  Statistics of line tensions at fairlead in two mooring systems under extreme sea state

    系泊类型缆号平均值/kN标准差/kN最大值/kN最小值/kN
    锚链1204.772149.0291 330.5400.067
    2200.90153.851665.6462.194
    3200.90153.851665.6462.194
    混合缆148.1149.552122.51118.331
    247.6144.99969.31731.902
    347.6144.99969.31731.902
    下载: 导出CSV
  • [1] NEARY V S, LAWSON M, PREVISIC M, et al. Methodology for design and economic analysis of marine energy conversion (MEC) technologies: No. SAND2014-3561C[R]. Albuquerque, NM, USA: Sandia National Laboratories, 2014.
    [2] WELLER S D, JOHANNING L, DAVIES P, et al. Synthetic mooring ropes for marine renewable energy applications[J]. Renewable Energy, 2015, 83: 1268–1278. doi: 10.1016/j.renene.2015.03.058
    [3] JOHANNING L, SMITH G H, WOLFRAM J. Mooring design approach for wave energy converters[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2006, 220(4): 159–174. doi: 10.1243/14750902JEME54
    [4] JOHANNING L, SMITH G H, WOLFRAM J. Measurements of static and dynamic mooring line damping and their importance for floating WEC devices[J]. Ocean Engineering, 2007, 34(14/15): 1918–1934. doi: 10.1016/j.oceaneng.2007.04.002
    [5] FITZGERALD J, BERGDAHL L. Including moorings in the assessment of a generic offshore wave energy converter: a frequency domain approach[J]. Marine Structures, 2008, 21(1): 23–46. doi: 10.1016/j.marstruc.2007.09.004
    [6] CERVEIRA F, FONSECA N, PASCOAL R. Mooring system influence on the efficiency of wave energy converters[J]. International Journal of Marine Energy, 2013, 16(3/4): 65–81. doi: 10.1016/j.ijome.2013.11.006
    [7] ZANUTTIGH B, ANGELELLI E, KOFOED J P. Effects of mooring systems on the performance of a wave activated body energy converter[J]. Renewable Energy, 2013, 57: 422–431. doi: 10.1016/j.renene.2013.02.006
    [8] BOSMA B, SHENG W, THIEBAUT F. Performance assessment of a floating power system for the galway bay wave energy test site[C]//International Conference on Ocean Energy (ICOE). Halifax, NS, Canada: International Energy Agency (IEA) Press, 2014: 1–10.
    [9] GULLAKSEN J. Wave energy converter (WEC)-formulation of numerical method to predict fluid-structure interaction and wave energy potential[C]//Paper presented at the Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 2014.
    [10] CASAUBIEILH P, THIEBAUT F, BOSMA B, et al. Performance improvements of mooring systems for wave energy converters[C]//1st International Conference on Renewable Energies Offshore. Lisbon, Portugal: CRC Press, 2014: 24–26.
    [11] HARNOIS V, WELLER S D, JOHANNING L, et al. Numerical model validation for mooring systems: method and application for wave energy converters[J]. Renewable Energy, 2015, 75: 869–887. doi: 10.1016/j.renene.2014.10.063
    [12] FLORY J F, BANFIELD S J, RIDGE I M L, et al. Mooring systems for marine energy converters[C]//Proceeding of OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1–13.
    [13] PAREDES G M, PALM J, ESKILSSON C, et al. Experimental investigation of mooring configurations for wave energy converters[J]. International Journal of Marine Energy, 2016, 19(15): 56–67. doi: 10.1016/j.ijome.2016.04.009
    [14] PALM J, ESKILSSON C, PAREDES G M, et al. Coupled mooring analysis for floating wave energy converters using CFD: formulation and validation[J]. International Journal of Marine Energy, 2016, 16: 83–99. doi: 10.1016/j.ijome.2016.05.003
    [15] SHI H D, CAO F F, LIU Z, et al. Theoretical study on the power take-off estimation of heaving buoy wave energy converter[J]. Renewable Energy, 2016, 86: 441–448. doi: 10.1016/j.renene.2015.08.027
    [16] FOLLEY M. Numerical modelling of wave energy converters: state-of-the-art techniques for single devices and arrays[M]. Amsterdam: Academic Press, 2016.
    [17] DAVIDSON J, RINGWOOD J V. Mathematical modelling of mooring systems for wave energy converters—a review[J]. Energies, 2017, 10(5): 666. doi: 10.3390/en10050666
    [18] SERGIIENKO N Y, RAFIEE A, CAZZOLATO B S, et al. Feasibility study of the three-tether axisymmetric wave energy converter[J]. Ocean Engineering, 2018, 150: 221–233. doi: 10.1016/j.oceaneng.2017.12.055
    [19] BARRERA C, GUANCHE R, LOSADA I J. Experimental modelling of mooring systems for floating marine energy concepts[J]. Marine Structures, 2019, 63: 153–180. doi: 10.1016/j.marstruc.2018.08.003
    [20] WEC-Sim manual[EB/OL]. [2020-12-14]. https://wec-sim.github.io/WEC-Sim/.
    [21] YU Y H, LAWSON M, RUEHL K, et al. Development and demonstration of the WEC-Sim wave energy converter simulation tool[C]//Proceedings of the 2nd Marine Energy Technology Symposium. Seattle, WA: METS, 2014: 1–8.
    [22] YU Y H, LI Y. Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system[J]. Computers & Fluids, 2013, 73: 104–114.
    [23] YU Y H, TOM N, JENNE D. Numerical analysis on hydraulic power take-off for wave energy converter and power smoothing methods[C]//ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME, 2018.
    [24] RUEHL K, MICHELEN C, KANNER S, et al. Preliminary verification and validation of WEC-sim, an open-source wave energy converter design tool[C]//ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA: ASME, 2014.
    [25] RUEHL K, MICHELEN C, YU Y H, et al. Update on WEC-Sim validation testing and code development [C]// Proposed for Presentation at the Marine Energy Technology Symposium. Albuquerque, NM: Sandia National Lab. , 2016.
    [26] RUEHL K, MICHELEN C, BOSMA B, et al. WEC-Sim phase 1 validation testing: numerical modeling of experiments[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
    [27] LAWSON M J, YU Y H, NELESSEN A, et al. Implementing nonlinear buoyancy and excitation forces in the WEC-Sim wave energy converter modeling tool [C]// ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, CA: ASME, 2014.
    [28] LAWSON M, GARZON B B, WENDT F, et al. COER hydrodynamic modeling competition: modeling the dynamic response of a floating body using the WEC-Sim and FAST simulation tools[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
    [29] LAWSON M, YU Y H, RUEHL K, et al. Improving and Validating the WEC-Sim wave energy converter code[C]//Proceedings of the 3rd Marine Energy Technology Symposium, DC. Albuquerque, NM: Sandia National Lab. , 2015.
    [30] TOM N, LAWSON M, YU Y H. Demonstration of the recent additions in modeling capabilities for the WEC-sim wave energy converter design tool[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
    [31] TOM N, LAWSON M J, YU Y H. Recent additions in the modeling capabilities of an open-source wave energy converter design tool[C]//25th International Ocean and Polar Engineering. Kona, HI, USA: ISOPE Press, 2015: 1–8.
    [32] BOSMA B, LEWIS T, BREKKEN T, et al. Wave tank testing and model validation of an autonomous wave energy converter[J]. Energies, 2015, 8(8): 8857–8872. doi: 10.3390/en8088857
    [33] BOSMA B, SIMMONS A, LOMONACO P, et al. wec-sim phase 1 validation testing: experimental setup and initial results[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
    [34] SO R, SIMMONS A, BREKKEN T, et al. Development of PTO-Sim: a power performance module for the open-source wave energy converter code WEC-Sim[C]//Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John's, Newfoundland, Canada: ASME, 2015.
    [35] SO R, MICHELEN C, BOSMA B, et al. Statistical analysis of a 1:7 scale field test wave energy converter using WEC-sim[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1118–1126. doi: 10.1109/TSTE.2017.2656863
    [36] YIM S C, ADAMI N, BOSMA B, et al. A preliminary study on the modeling and analysis of nonlinear effects of ocean waves and power-take-off control on wave energy conversion system dynamics[C]//ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019.
    [37] HALL M, GOUPEE A. Validation of a lumped-mass mooring line model with deepcwind semisubmersible model test data[J]. Ocean Engineering, 2015, 104: 590–603. doi: 10.1016/j.oceaneng.2015.05.035
    [38] SIRNIVAS S, YU Y H, HALL M, et al. Coupled mooring analyses for the WEC-sim wave energy converter design tool[C]//ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016.
    [39] 李焱, 唐友刚, 赵志娟, 等. 新型多筒式FDPSO概念设计及其系泊系统分析[J]. 中国舰船研究, 2013, 8(5): 97–103. doi: 10.3969/j.issn.1673-3185.2013.05.017

    LI Y, TANG Y G, ZHAO Z J, et al. Concept design and analysis of the mooring system for the new type of multi-tubular FDPSO[J]. Chinese Journal of Ship Research, 2013, 8(5): 97–103 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.05.017
    [40] LIAN Y S, LIU H X, HUANG W, et al. A creep-rupture model of synthetic fiber ropes for deepwater moorings based on thermodynamics[J]. Applied Ocean Research, 2015, 52: 234–244. doi: 10.1016/j.apor.2015.06.009
    [41] LIAN Y S, ZHENG J H, LIU H X, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modelling[J]. Ocean Engineering, 2018, 162: 43–54. doi: 10.1016/j.oceaneng.2018.05.003
    [42] LIAN Y S, ZHENG J H, LIU H X. An investigation on creep and creep-rupture behaviors of HMPE ropes[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021401. doi: 10.1115/1.4038345
    [43] LIAN Y S, LIU H X, ZHANG Y M, et al. An experimental investigation on fatigue behaviors of HMPE ropes[J]. Ocean Engineering, 2017, 139: 237–249. doi: 10.1016/j.oceaneng.2017.05.007
    [44] LIAN Y S, LIU H X, LI L N, et al. An experimental investigation on the bedding-in behavior of synthetic fiber ropes[J]. Ocean Engineering, 2018, 160: 368–381. doi: 10.1016/j.oceaneng.2018.04.071
    [45] LIU H X, HUANG W, LIAN Y S, et al. An experimental investigation on nonlinear behaviors of synthetic fiber ropes for deepwater moorings under cyclic loading[J]. Applied Ocean Research, 2014, 45: 22–32. doi: 10.1016/j.apor.2013.12.003
    [46] LIU H X, LIAN Y S, LI L N, et al. Experimental investigation on dynamic stiffness of damaged synthetic fiber ropes for deepwater moorings[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137(6): 061401. doi: 10.1115/1.4031392
    [47] 连宇顺, 刘海笑. 海洋系泊工程中合成纤维系缆研究述评[J]. 海洋工程, 2019, 37(1): 142–154.

    LIAN Y S, LIU H X. Review of synthetic fiber ropes for deepwater moorings[J]. The Ocean Engineering, 2019, 37(1): 142–154 (in Chinese).
    [48] WELLER S D, DAVIES P, VICKERS A W, et al. Synthetic rope responses in the context of load history: operational performance[J]. Ocean Engineering, 2014, 83: 111–124. doi: 10.1016/j.oceaneng.2014.03.010
    [49] LIAN Y S, LIU H X, YIM S C, et al. An investigation on internal damping behavior of fiber rope[J]. Ocean Engineering, 2019, 182: 512–526. doi: 10.1016/j.oceaneng.2019.04.087
    [50] France Bureau Veritas (BV). Guidance notes certification of fibre ropes for deepwater offshore services[S]. Paris, France: Bureau Veritas Press, 2017.
    [51] Orcina, Orcaflex documentation [EB/OL]. [2020-12-14]. https://www.orcina.com/webhelp/OrcaFlex/Default.htm.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  916
  • HTML全文浏览量:  282
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-04-04
  • 网络出版日期:  2022-01-29
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回