Application research on active disturbance rejection control algorithm and test of electro-hydraulic steering gear
-
摘要:
目的 直驱式容积控制的新型电液舵机是典型的大惯量小阻尼系统,为解决其控制快速性、稳定性以及安静性之间的矛盾,需开展电液舵机的自抗扰控制研究。 方法 首先,建立电液舵机的自抗扰控制(ADRC)模型,重点设计过渡过程以缓解启停瞬间的液压冲击;然后,搭建实物控制试验台,通过分析实物控制过程的稳定性问题,相应调整算法的滤波效果,并增加输出滤波预估模块,从而预报并补偿电液舵机的大时滞;最后,开展算法优化前后的控制性能对比测试。 结果 试验结果表明:在改进的自抗扰控制算法作用下,电液舵机启停瞬态的结构振动降幅约6~10 dB,位置控制精度在1 mm以内,在负载冲击等外界干扰下具有较好的稳定性和跟随性。 结论 研究成果可为大惯量小阻尼系统的稳定控制和自抗扰控制算法的工程化应用提供参考。 Abstract:Objectives The new type of electro-hydraulic steering gear with direct drive volume control is a typical system with large inertia and small damping. To solve the problem of control rapidity, stability and quietness contradicting each other, the engineering application of active disturbance rejection control (ADRC) for the electro-hydraulic steering gear is studied. Methods First, the ADRC model of the electro-hydraulic steering gear is established and a transition process is designed to control the start-stop hydraulic impact. Next, a physical control test-bed is built, the stability of physical control is analyzed, the filtering effect of the algorithm is adjusted, an output filtering prediction module is added, and the big time delay of the electro-hydraulic steering gear is predicted and compensated. Finally, a comparative test of the algorithm control performance before and after optimization is carried out. Results The experimental results show that, under the action of the improved ADRC control algorithm, the structural vibration of the electro-hydraulic steering gear in the start-stop transient state is reduced by about 6–10 dB, the position accuracy can be controlled within 1 mm, and the steering gear has good stability and followability under external interference such as load impact. Conclusion The results of this study can provide references for the stability control and ADRC algorithms of systems with large inertia and small damping. -
表 1 仿真整定的控制参数值
Table 1. The control parameter values of simulation setting
参数 数值 $r$ 50 h 0.01 ${\;\beta _{\text{1}}}$ 2 ${\;\beta _{\text{2}}}$ 55 ${\;\beta _{\text{3}}}$ 800 $b$ 0.5 ${r_1}$ 100 c 0.02 -
[1] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13–18. doi: 10.3969/j.issn.1671-7848.2002.03.003HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13–18 (in Chinese). doi: 10.3969/j.issn.1671-7848.2002.03.003 [2] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1): 24–31. doi: 10.3969/j.issn.1673-8128.2007.01.004HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007(1): 24–31 (in Chinese). doi: 10.3969/j.issn.1673-8128.2007.01.004 [3] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.HAN J Q. Active disturbance rejection control technique—the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008 (in Chinese). [4] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281–295. doi: 10.7641/CTA.2017.60363LI J, QI X H, WAN H, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control Theory & Applications, 2017, 34(3): 281–295 (in Chinese). doi: 10.7641/CTA.2017.60363 [5] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19–23. doi: 10.3321/j.issn:1001-0920.1998.01.005HAN J Q. Auto-disturbances-rejection controller and it's applications[J]. Control and Decision, 1998, 13(1): 19–23 (in Chinese). doi: 10.3321/j.issn:1001-0920.1998.01.005 [6] 韩京清. 时滞对象的自抗扰控制[J]. 控制工程, 2008, 15(增刊 2): 7-10.HAN J Q. Auto-disturbances rejection control for time-delay systems[J]. Control Engineering of China, 2008, 15(Supp 2): 7-10 (in Chinese). [7] ZHENG Q L, GAO Z Q. Predictive active disturbance rejection control for processes with time delay[J]. ISA Transactions, 2014, 53(4): 873–881. doi: 10.1016/j.isatra.2013.09.021 [8] ZHAO S. Practical solutions to the non-minimum phase and vibration problems under the disturbance rejection paradigm[D]. Changsha: National University of Defense Technology, 2012. [9] 唐德翠, 高志强, 张绪红. 浊度大时滞过程的预测自抗扰控制器设计[J]. 控制理论与应用, 2017, 34(1): 101–108.TANG D C, GAO Z Q, ZHANG X H. Design of predictive active disturbance rejection controller for turbidity[J]. Control Theory & Applications, 2017, 34(1): 101–108 (in Chinese). [10] 王丽君, 李擎, 童朝南, 等. 时滞系统的自抗扰控制综述[J]. 控制理论与应用, 2013, 30(12): 1521–1533. doi: 10.7641/CTA.2013.31058WANG L J, LI Q, TONG C N, et al. Overview of active disturbance rejection control for systems with time-delay[J]. Control Theory & Applications, 2013, 30(12): 1521–1533 (in Chinese). doi: 10.7641/CTA.2013.31058 [11] 王睿, 张军, 宋金来. 舵机自抗扰控制应用研究[J]. 系统仿真学报, 2013, 25(1): 111–115.WANG R, ZHANG J, SONG J L. Application of active disturbance rejection control in electromechanical actuator control system[J]. Journal of System Simulation, 2013, 25(1): 111–115 (in Chinese). [12] 熊官送, 那学智, 曹东海. 自抗扰控制技术在电动舵系统中的应用[J]. 导航定位与授时, 2014, 1(3): 42–46. doi: 10.3969/j.issn.2095-8110.2014.03.008XIONG G S, NA X Z, CAO D H. The application of ADRC in electromechanical actuation system[J]. Navigation Positioning & Timing, 2014, 1(3): 42–46 (in Chinese). doi: 10.3969/j.issn.2095-8110.2014.03.008 [13] 张明月, 杨洪波, 章家保, 等. 改进自抗扰控制谐波式电动舵机伺服系统[J]. 光学精密工程, 2014, 22(1): 99–108. doi: 10.3788/OPE.20142201.0099ZHANG M Y, YANG H B, ZHANG J B, et al. Servo system of harmonic drive electromechanical actuator using improved ADRC[J]. Optics and Precision Engineering, 2014, 22(1): 99–108 (in Chinese). doi: 10.3788/OPE.20142201.0099 [14] 陈宗斌, 何琳, 廖健, 等. 电液舵机的自抗扰控制研究[J]. 机床与液压, 2019, 47(14): 147–152. doi: 10.3969/j.issn.1001-3881.2019.14.032CHEN Z B, HE L, LIAO J, et al. Active disturbance rejection control of electro-hydraulic steering gear system[J]. Machine Tool & Hydraulics, 2019, 47(14): 147–152 (in Chinese). doi: 10.3969/j.issn.1001-3881.2019.14.032 [15] 徐超, 刘刚, 徐国华, 等. 基于泵控液压舵机的潜艇深度及纵倾控制[J]. 中国舰船研究, 2017, 12(2): 116–123. doi: 10.3969/j.issn.1673-3185.2017.02.015XU C, LIU G, XU G H, et al. The depth and pitch control of submarines based on the pump-hydraulic servo[J]. Chinese Journal of Ship Research, 2017, 12(2): 116–123 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.015 [16] 谢伟贤, 胡林芬. 基于系统输出带有噪声的自抗扰控制器[J]. 电气开关, 2014, 52(5): 18–21. doi: 10.3969/j.issn.1004-289X.2014.05.007XIE W X, HU L F. A new type of ADRC based on the system output with noises[J]. Electric Switcher, 2014, 52(5): 18–21 (in Chinese). doi: 10.3969/j.issn.1004-289X.2014.05.007 [17] 王宇航, 姚郁, 马克茂. Fal函数滤波器的分析及应用[J]. 电机与控制学报, 2010, 14(11): 88–91,99. doi: 10.3969/j.issn.1007-449X.2010.11.015WANG Y H, YAO Y, MA K M. Analysis and application of Fal function filter[J]. Electric Machines and Control, 2010, 14(11): 88–91,99 (in Chinese). doi: 10.3969/j.issn.1007-449X.2010.11.015 [18] 金月, 俞孟蕻, 袁伟. 新型线性自抗扰控制器在船舶动力定位控制系统中的应用[J]. 中国舰船研究, 2017, 12(1): 134–139. doi: 10.3969/j.issn.1673-3185.2017.01.020JIN Y, YU M H, YUAN W. Application of novel linear active disturbance rejection control in dynamic positioning control system of vessels[J]. Chinese Journal of Ship Research, 2017, 12(1): 134–139 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.020 -
ZG2222_en.pdf
-