Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation
-
摘要:
目的 为解决载体受到扰动时组合导航精度下降的问题,提出一种基于置信检验自适应联邦卡尔曼滤波(CC-AFKF)框架。 方法 首先,将电子罗盘(EC)、全球定位系统(GPS)与惯性导航系统(INS)相结合;其次,构建置信检验模型,有效滤除INS/GPS和INS/EC子系统中低置信度的量测值,保证量测值的准确性;最后,提出INS/GPS和INS/EC系统自适应调节因子策略,有效调整更新过程中系统噪声协方差。 结果 通过对具备INS/GPS/EC组合导航系统的水下机器人开展大量相关试验,结果表明,CC-AFKF算法相较于典型的卡尔曼滤波(KF)和联邦卡尔曼滤波(FKF)算法在位置和速度的融合精度上均能至少提高29%。 结论 研究成果可为松耦合组合导航系统的研究提供相应的方向和思路。 -
关键词:
- 置信检验 /
- 自适应联邦卡尔曼滤波 /
- 组合导航 /
- 水下机器人
Abstract:Objectives In order to solve the problem of the reduced accuracy of integrated navigation when a carrier is disturbed, a confidence check-adaptive federated Kalman filter (CC-AFKF) framework is proposed. Methods First, the electronic compass (EC), global positioning system (GPS) and inertial navigation system (INS) are combined. Second, a confidence check model is constructed to effectively filter out low-confidence measurements in the INS/GPS and INS/EC subsystems, and ensure the accuracy of the measured value. Finally, an adaptive adjustment factor strategy for the INS/GPS and INS/EC systems is proposed to effectively adjust system noise covariance during the update process. Results A large number of related tests are carried out through an underwater vehicle equipped with INS/GPS/EC integrated navigation systems. The test results show that the CC-AFKF algorithm proposed in this paper can improve the integrated accuracy of position and velocity by at least 29% compared with typical KF and FKF algorithms. Conclusions The results of this study can provide corresponding directions and ideas for research on loosely coupled integrated navigation systems. -
表 1 组合导航模块器件清单
Table 1. Parts list of integrated navigation module
模块名称 型号 处理器 PIXHAWK IMU模块 MPU6050 GPS模块 NEO-6M-GPS 电子罗盘 GY-26 -
[1] GREWAL M S, ANDREWS A P, BARTONE C G. Global navigation satellite systems, inertial navigation, and integration[M]. Hoboken: John Wiley & Sons, 2006: 23-24. [2] YANG Y X, GAO W G. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177–183. doi: 10.1007/s00190-006-0041-0 [3] 周先林, 张慧君, 和涛, 等. GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222–230.ZHOU X L, ZHANG H J, HE T, et al. Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation[J]. Journal of Time and Frequency, 2020, 43(3): 222–230 (in Chinese). [4] 吕建新, 周翟和, 伏家杰, 等. 自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J]. 测控技术, 2017, 36(6): 15–19. doi: 10.3969/j.issn.1000-8829.2017.06.004LV J X, ZHOU Z H, FU J J, et al. Application of adaptive federated Kalman filter in robot integrated navigation system[J]. Measurement & Control Technology, 2017, 36(6): 15–19 (in Chinese). doi: 10.3969/j.issn.1000-8829.2017.06.004 [5] LI Z K, WANG J, GAO J X. An enhanced GPS/INS integrated navigation system with GPS observation expansion[J]. The Journal of Navigation, 2016, 69(5): 1041–1060. doi: 10.1017/S0373463315001083 [6] JIANG W, LI Y, RIZOS C. Optimal data fusion algorithm for navigation using triple integration of PPP-GNSS, INS, and terrestrial ranging system[J]. IEEE Sensors Journal, 2015, 15(10): 5634–5644. doi: 10.1109/JSEN.2015.2447015 [7] MA X S, ZHANG T W, LIU X X. Application of adaptive federated filter based on innovation covariance in underwater integrated navigation system[C]//Proceedings of the 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Hangzhou, China: IEEE, 2018: 209-213. [8] LIU X H, LIU X X, YANG Y, et al. An improved Federated Filter navigation algorithm for UAV[C]//Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2019: 1621-1625. [9] MALLESWARAN M, VAIDEHI V, MOHANKUMAR M. A hybrid approach for GPS/INS integration using Kalman filter and IDNN[C]//Proceedings of the 3rd International Conference on Advanced Computing. Chennai, India: IEEE, 2011: 378-383. [10] SUNG K, KIM H. Simplified KF-based energy-efficient vehicle positioning for smartphones[J]. Journal of Communications and Networks, 2020, 22(2): 93–107. doi: 10.1109/JCN.2020.000003 [11] ABOSEKEEN A, NOURELDIN A, KORENBERG M J. Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1250–1263. doi: 10.1109/TITS.2019.2905871 [12] GARCÍA-LIGERO M J, HERMOSO-CARAZO A, LINARES-PÉREZ J. Distributed fusion estimation in networked systems with uncertain observations and Markovian random delays[J]. Signal Processing, 2015, 106: 114–122. doi: 10.1016/j.sigpro.2014.07.003 [13] 崔平远, 黄晓瑞. 基于联合卡尔曼滤波的多传感器信息融合算法及其应用[J]. 电机与控制学报, 2001, 5(3): 204–207. doi: 10.3969/j.issn.1007-449X.2001.03.017CUI P Y, HUANG X R. Multi-sensor information fusion algorithm based on federal Kalman filter and its application[J]. Electric Machines and Control, 2001, 5(3): 204–207 (in Chinese). doi: 10.3969/j.issn.1007-449X.2001.03.017 [14] ZHANG C, LI T S, GUO C. GPS/INS integration based on adaptive interacting multiple model[J]. The Journal of Engineering, 2019, 2019(15): 561–565. doi: 10.1049/joe.2018.9381 [15] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 76–80.YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 76–80. (in Chinese) [16] SHEN K, WANG M L, FU M Y, et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7659–7668. [17] XIONG H L, MAI Z Z, TANG J, et al. Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle[J]. IEEE Access, 2019, 7: 26168–26178. doi: 10.1109/ACCESS.2019.2897222 [18] MIAO Z B, ZHANG H T, ZHANG J Z. An accurate and generic testing approach to vehicle stability parameters based on GPS and INS[J]. Sensors, 2015, 15(12): 30469–30486. doi: 10.3390/s151229812 [19] BRACE P, GOLDHAHN R, FERRI G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016, 16(11): 4003–4014. doi: 10.1109/JSEN.2015.2431818 [20] 翟云峰, 王冠学, 徐国华, 等. 大尺度欠驱动高速AUV导航系统研制[J]. 中国舰船研究, 2018, 13(6): 78–86,93.ZHAI Y F, WANG G X, XU G H, et al. Development of navigation system for large-scale and high-speed underactuated AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 78–86,93 (in Chinese). -
ZG2216_en.pdf
-