留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

置信检验自适应联邦卡尔曼滤波及其水下机器人组合导航应用

陈帅 王宁 陈廷凯 杨毅 田嘉禾

陈帅, 王宁, 陈廷凯, 等. 置信检验自适应联邦卡尔曼滤波及其水下机器人组合导航应用[J]. 中国舰船研究, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216
引用本文: 陈帅, 王宁, 陈廷凯, 等. 置信检验自适应联邦卡尔曼滤波及其水下机器人组合导航应用[J]. 中国舰船研究, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216
CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216
Citation: CHEN S, WANG N, CHEN T K, et al. Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation[J]. Chinese Journal of Ship Research, 2022, 17(1): 203–211, 220 doi: 10.19693/j.issn.1673-3185.02216

置信检验自适应联邦卡尔曼滤波及其水下机器人组合导航应用

doi: 10.19693/j.issn.1673-3185.02216
基金项目: 辽宁省“兴辽英才计划”资助项目(XLYC1807013);辽宁省高等学校创新人才支持计划资助项目(LR2017024);水下机器人技术国防科技重点实验室稳定支持课题资助项目(SXJQR2018WDKT03)
详细信息
    作者简介:

    陈帅,男,1996年生,硕士生。研究方向:多源信息融合。E-mail: cs773715170@163.com

    王宁,男,1983年生,博士,教授,博士生导师。研究方向:无人船,海洋机器人,无人系统自主控制,人工智能。E-mail: n.wang.dmu.cn@gmail.com

    陈廷凯,男,1993年生,博士。研究方向:目标识别与检测。E-mail: tingkai.chen@hotmail.com

    通信作者:

    王宁

  • 中图分类号: U666.1

Confidence check-adaptive federated Kalman filter and its application in underwater vehicle integrated navigation

知识共享许可协议
置信检验自适应联邦卡尔曼滤波及其水下机器人组合导航应用陈帅,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为解决载体受到扰动时组合导航精度下降的问题,提出一种基于置信检验自适应联邦卡尔曼滤波(CC-AFKF)框架。  方法  首先,将电子罗盘(EC)、全球定位系统(GPS)与惯性导航系统(INS)相结合;其次,构建置信检验模型,有效滤除INS/GPS和INS/EC子系统中低置信度的量测值,保证量测值的准确性;最后,提出INS/GPS和INS/EC系统自适应调节因子策略,有效调整更新过程中系统噪声协方差。  结果  通过对具备INS/GPS/EC组合导航系统的水下机器人开展大量相关试验,结果表明,CC-AFKF算法相较于典型的卡尔曼滤波(KF)和联邦卡尔曼滤波(FKF)算法在位置和速度的融合精度上均能至少提高29%。  结论  研究成果可为松耦合组合导航系统的研究提供相应的方向和思路。
  • 图  INS/GPS/EC组合导航系统结构图

    Figure  1.  Structure diagram of INS/GPS/EC integrated navigation system

    图  置信检验自适应联邦卡尔曼滤波算法流程图

    Figure  2.  Flow process of confidence check-adaptive federated Kalman filter algorithm

    图  水下机器人试验平台

    Figure  3.  Test platform of underwater vehicle

    图  水下机器人的真实运动轨迹

    Figure  4.  Real trajectory of underwater vehicle

    图  原始经纬度信息对比图

    Figure  5.  Comparison of original latitude and longitude information

    图  原始北、东向速度信息对比图

    Figure  6.  Comparison of original information of eastward and northward speed

    图  受扰动后不同框架的经纬度对比图

    Figure  7.  Comparison of latitude and longitude between different frameworks due to perturbation

    图  受扰动后不同框架的北、东向速度对比图

    Figure  8.  Comparison of northward and eastward speed between different frameworks after perturbation

    图  不同框架的经纬度对比图

    Figure  9.  Comparison of latitude and longitude between different frameworks

    图  10  不同框架的经纬度误差对比图

    Figure  10.  Comparison of longitude and latitude errors between different frameworks

    图  11  不同框架的位置均方根误差对比图

    Figure  11.  Comparison of root mean square error of position between different frameworks

    图  12  不同框架的北、东向速度对比图

    Figure  12.  Comparison of northward and eastward speed between different frameworks

    图  13  不同框架下的北、东向速度误差对比图

    Figure  13.  Comparison of northward and eastward speed errors between different frameworks

    图  14  不同框架的速度均方根误差对比图

    Figure  14.  Comparison of root mean square error of speed between different frameworks

    表  组合导航模块器件清单

    Table  1.  Parts list of integrated navigation module

    模块名称型号
    处理器PIXHAWK
    IMU模块MPU6050
    GPS模块NEO-6M-GPS
    电子罗盘GY-26
    下载: 导出CSV
  • [1] GREWAL M S, ANDREWS A P, BARTONE C G. Global navigation satellite systems, inertial navigation, and integration[M]. Hoboken: John Wiley & Sons, 2006: 23-24.
    [2] YANG Y X, GAO W G. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177–183. doi: 10.1007/s00190-006-0041-0
    [3] 周先林, 张慧君, 和涛, 等. GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222–230.

    ZHOU X L, ZHANG H J, HE T, et al. Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation[J]. Journal of Time and Frequency, 2020, 43(3): 222–230 (in Chinese).
    [4] 吕建新, 周翟和, 伏家杰, 等. 自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J]. 测控技术, 2017, 36(6): 15–19. doi: 10.3969/j.issn.1000-8829.2017.06.004

    LV J X, ZHOU Z H, FU J J, et al. Application of adaptive federated Kalman filter in robot integrated navigation system[J]. Measurement & Control Technology, 2017, 36(6): 15–19 (in Chinese). doi: 10.3969/j.issn.1000-8829.2017.06.004
    [5] LI Z K, WANG J, GAO J X. An enhanced GPS/INS integrated navigation system with GPS observation expansion[J]. The Journal of Navigation, 2016, 69(5): 1041–1060. doi: 10.1017/S0373463315001083
    [6] JIANG W, LI Y, RIZOS C. Optimal data fusion algorithm for navigation using triple integration of PPP-GNSS, INS, and terrestrial ranging system[J]. IEEE Sensors Journal, 2015, 15(10): 5634–5644. doi: 10.1109/JSEN.2015.2447015
    [7] MA X S, ZHANG T W, LIU X X. Application of adaptive federated filter based on innovation covariance in underwater integrated navigation system[C]//Proceedings of the 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Hangzhou, China: IEEE, 2018: 209-213.
    [8] LIU X H, LIU X X, YANG Y, et al. An improved Federated Filter navigation algorithm for UAV[C]//Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2019: 1621-1625.
    [9] MALLESWARAN M, VAIDEHI V, MOHANKUMAR M. A hybrid approach for GPS/INS integration using Kalman filter and IDNN[C]//Proceedings of the 3rd International Conference on Advanced Computing. Chennai, India: IEEE, 2011: 378-383.
    [10] SUNG K, KIM H. Simplified KF-based energy-efficient vehicle positioning for smartphones[J]. Journal of Communications and Networks, 2020, 22(2): 93–107. doi: 10.1109/JCN.2020.000003
    [11] ABOSEKEEN A, NOURELDIN A, KORENBERG M J. Improving the RISS/GNSS land-vehicles integrated navigation system using magnetic azimuth updates[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1250–1263. doi: 10.1109/TITS.2019.2905871
    [12] GARCÍA-LIGERO M J, HERMOSO-CARAZO A, LINARES-PÉREZ J. Distributed fusion estimation in networked systems with uncertain observations and Markovian random delays[J]. Signal Processing, 2015, 106: 114–122. doi: 10.1016/j.sigpro.2014.07.003
    [13] 崔平远, 黄晓瑞. 基于联合卡尔曼滤波的多传感器信息融合算法及其应用[J]. 电机与控制学报, 2001, 5(3): 204–207. doi: 10.3969/j.issn.1007-449X.2001.03.017

    CUI P Y, HUANG X R. Multi-sensor information fusion algorithm based on federal Kalman filter and its application[J]. Electric Machines and Control, 2001, 5(3): 204–207 (in Chinese). doi: 10.3969/j.issn.1007-449X.2001.03.017
    [14] ZHANG C, LI T S, GUO C. GPS/INS integration based on adaptive interacting multiple model[J]. The Journal of Engineering, 2019, 2019(15): 561–565. doi: 10.1049/joe.2018.9381
    [15] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 76–80.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 76–80. (in Chinese)
    [16] SHEN K, WANG M L, FU M Y, et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7659–7668.
    [17] XIONG H L, MAI Z Z, TANG J, et al. Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle[J]. IEEE Access, 2019, 7: 26168–26178. doi: 10.1109/ACCESS.2019.2897222
    [18] MIAO Z B, ZHANG H T, ZHANG J Z. An accurate and generic testing approach to vehicle stability parameters based on GPS and INS[J]. Sensors, 2015, 15(12): 30469–30486. doi: 10.3390/s151229812
    [19] BRACE P, GOLDHAHN R, FERRI G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016, 16(11): 4003–4014. doi: 10.1109/JSEN.2015.2431818
    [20] 翟云峰, 王冠学, 徐国华, 等. 大尺度欠驱动高速AUV导航系统研制[J]. 中国舰船研究, 2018, 13(6): 78–86,93.

    ZHAI Y F, WANG G X, XU G H, et al. Development of navigation system for large-scale and high-speed underactuated AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 78–86,93 (in Chinese).
  • ZG2216_en.pdf
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  173
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-03-08
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回