Influence of back-steam control technology on marine steam power system
-
摘要:
目的 船用蒸汽动力系统在紧急减速或换向操作过程中,回汽控制技术是缓解锅炉内锅筒超压问题的有效手段,需对其带来的影响进行研究。 方法 建立增压锅炉、主汽轮机和螺旋桨等设备的蒸汽动力系统仿真模型,针对大型舰船紧急减速过程和换向操作过程中快关阀无回汽、快关阀有回汽、慢关阀无回汽这3种工况,开展回汽控制特性的仿真对比分析。 结果 仿真结果表明:回汽控制可以有效避免紧急减速过程和换向过程中的锅筒超压问题,且系统稳定耗时分别缩短了3 min和 1 min左右。 结论 研究成果可为舰船机动性设计和安全性设计提供参考。 Abstract:Objectives In the process of the emergency deceleration and reversing operations of marine steam power systems, back-steam control technology is an effective means of alleviating the problem of boiler drum overpressure, so it is necessary to study its influence on the system. Methods This paper establishes a steam power system simulation model of a supercharged boiler, main steam turbine and propeller, and carries out the simulation and comparative analysis of the characteristics of back-steam control in the process of the emergency deceleration and reversing of large ships under the three working conditions of quick closing valve with/without back-steam and slow closing valve without back-steam. Results The simulation results show that the steam return control technology can effectively prevent boiler drum overpressure in the process of emergency deceleration and reversing, and the system stability time is shortened by about 3 mins and 1 min respectively. Conclusion The results of this study can provide references for ship maneuverability and safety design. -
Key words:
- steam power /
- dynamic simulation /
- back-steam control /
- response characteristics
-
表 1 仿真值及相对误差
Table 1. Simulation values and relative errors
模型参数 高速工况 低速工况 倒车工况 仿真值 相对误差/% 仿真值 相对误差/% 仿真值 相对误差/% 锅筒压力 1.021 2.10 0.987 1.30 0.976 2.40 过热蒸汽温度 1.017 1.70 1.048 4.80 1.013 1.30 主机进汽流量 1.007 0.70 1.035 3.50 0.983 1.70 螺旋桨转速 0.996 0.40 1.009 0.90 0.995 0.50 -
[1] 吕建伟, 易慧, 刘中华. 舰船设计方案评估指标体系研究[J]. 船舶工程, 2005, 27(4): 53–57. doi: 10.3969/j.issn.1000-6982.2005.04.007LV J W, YI H, LIU Z H. Research on index system for evaluating warship design[J]. Ship Engineering, 2005, 27(4): 53–57 (in Chinese). doi: 10.3969/j.issn.1000-6982.2005.04.007 [2] 朱泳, 金家善, 刘东东. 舰用蒸汽动力装置回汽刹车与回汽保护技术研究[J]. 汽轮机技术, 2012, 54(6): 404–407,411. doi: 10.3969/j.issn.1001-5884.2012.06.002ZHU Y, JIN J S, LIU D D. Study of back-steam braking and back-steam protection technology for marine steam power plants[J]. Turbine Technology, 2012, 54(6): 404–407,411 (in Chinese). doi: 10.3969/j.issn.1001-5884.2012.06.002 [3] 朱泳, 金家善, 刘东东. 蒸汽动力舰船回汽制动机理与系统建模仿真[J]. 中南大学学报(自然科学版), 2013, 44(7): 2771–2777.ZHU Y, JIN J S, LIU D D. Numerical modeling and mechanism of back-steam braking for steam-powered ships[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2771–2777 (in Chinese). [4] 史智俊, 张国磊, 李彦军, 等. 回汽保护控制下舰用蒸汽动力系统响应规律[J]. 化工学报, 2015, 66(增刊 2): 287–293.SHI Z J, ZHANG G L, LI Y J, et al. Response pattern of marine steam power system under back-steam protection[J]. CIESC Journal, 2015, 66(Supp 2): 287–293 (in Chinese). [5] 曾帅, 史智俊, 王鹏, 等. 舰用蒸汽动力系统主汽压力控制方法仿真[J]. 化工学报, 2016, 67(增刊 1): 334–340.ZENG S, SHI Z J, WANG P, et al. Dynamic simulation of control for main steam pressure of marine steam power system[J]. CIESC Journal, 2016, 67(Supp 1): 334–340 (in Chinese). [6] 张国磊, 阙晨宇, 谭袖, 等. 舰船快速减速过程中主动回汽控制仿真[J]. 化工学报, 2018, 69(增刊 2): 358–364.ZHANG G L, QUE C Y, TAN X, et al. Simulation of initiative counter steam control during process of rapid deceleration in ship[J]. CIESC Journal, 2018, 69(Supp 2): 358–364 (in Chinese). [7] 张晓云, 王元慧, 李淑英, 等. 船用增压锅炉动态特性仿真研究[J]. 计算机仿真, 2010, 27(7): 346–349. doi: 10.3969/j.issn.1006-9348.2010.07.084ZHANG X Y, WANG Y H, LI S Y, et al. Research on dynamic characteristic simulation of marine supercharged boiler[J]. Computer Simulation, 2010, 27(7): 346–349 (in Chinese). doi: 10.3969/j.issn.1006-9348.2010.07.084 [8] TUCAKOVIC D R, STEVANOVIC V D, ZIVANOVIC T, et al. Thermal-hydraulic analysis of a steam boiler with rifled evaporating tubes[J]. Applied Thermal Engineering, 2007, 27(2/3): 509–519. [9] 朱泳, 金家善, 严志腾, 等. 船用增压锅炉响应负荷突降的特性仿真分析[J]. 中南大学学报(自然科学版), 2013, 44(9): 3678–3686.ZHU Y, JIN J S, YAN Z T, et al. Simulation analysis of responding characteristics on abrupt load dropping for marine supercharged boilers[J]. Journal of Central South University (Science and Technology), 2013, 44(9): 3678–3686 (in Chinese). [10] 王成. 基于GSE的增压锅炉系统动态性能仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.WANG C. Simulation research on dynamic performance of supercharged boiler system based on GSE[D]. Harbin: Harbin Engineering University, 2012 (in Chinese). [11] 杜德君. 船用锅炉与汽轮机动态仿真及控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.DU D J. Research on the modeling and the control of supercharged boiler and steam turbine[D]. Harbin: Harbin Engineering University, 2007 (in Chinese). [12] 朱齐丹, 张静巧, 张妤. 基于遗传算法改进的变偏置双交叉限幅燃烧控制系统设计[C]//中国指挥控制大会论文集. 北京: [s. n.], 2013: 81–86.ZHU Q D, ZHANG J Q, ZHANG Y. Design of variable bias double cross limiting combustion control system based on improved genetic algorithm[C]//Proceedings of China Command and Control Conference. Beijing: [s. n.], 2013: 81–86 (in Chinese). -