留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回汽控制对舰用蒸汽动力系统的影响

宋汉江 张国磊 曾帅

宋汉江, 张国磊, 曾帅. 回汽控制对舰用蒸汽动力系统的影响[J]. 中国舰船研究, 2022, 17(1): 196–202 doi: 10.19693/j.issn.1673-3185.02212
引用本文: 宋汉江, 张国磊, 曾帅. 回汽控制对舰用蒸汽动力系统的影响[J]. 中国舰船研究, 2022, 17(1): 196–202 doi: 10.19693/j.issn.1673-3185.02212
SONG H J, ZHANG G L, ZENG S. Influence of back-steam control technology on marine steam power system[J]. Chinese Journal of Ship Research, 2022, 17(1): 196–202 doi: 10.19693/j.issn.1673-3185.02212
Citation: SONG H J, ZHANG G L, ZENG S. Influence of back-steam control technology on marine steam power system[J]. Chinese Journal of Ship Research, 2022, 17(1): 196–202 doi: 10.19693/j.issn.1673-3185.02212

回汽控制对舰用蒸汽动力系统的影响

doi: 10.19693/j.issn.1673-3185.02212
详细信息
    作者简介:

    宋汉江,男,1981年生,博士,高级工程师

    张国磊,男,1976年生,博士,副教授。研究方向:舰船蒸汽动力系统性能仿真。E-mail:zhangguolei@hrbeu.edu.cn

    曾帅,男,1991年生,硕士。研究方向:动力工程及工程热物理

    通信作者:

    张国磊

  • 中图分类号: U664.11

Influence of back-steam control technology on marine steam power system

知识共享许可协议
回汽控制对舰用蒸汽动力系统的影响宋汉江,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  船用蒸汽动力系统在紧急减速或换向操作过程中,回汽控制技术是缓解锅炉内锅筒超压问题的有效手段,需对其带来的影响进行研究。  方法  建立增压锅炉、主汽轮机和螺旋桨等设备的蒸汽动力系统仿真模型,针对大型舰船紧急减速过程和换向操作过程中快关阀无回汽、快关阀有回汽、慢关阀无回汽这3种工况,开展回汽控制特性的仿真对比分析。  结果  仿真结果表明:回汽控制可以有效避免紧急减速过程和换向过程中的锅筒超压问题,且系统稳定耗时分别缩短了3 min和 1 min左右。  结论  研究成果可为舰船机动性设计和安全性设计提供参考。
  • 图  船用蒸汽动力系统的基本结构

    Figure  1.  Basic structure of marine steam power system

    图  减速过程中正车阀阀位的响应曲线

    Figure  2.  Response of ahead valve position during deceleration

    图  减速过程中螺旋桨转速的响应曲线

    Figure  3.  Response of propeller speed during deceleration

    图  减速过程中锅筒压力的响应曲线

    Figure  4.  Response of boiler drum pressure during deceleration

    图  减速过程中燃油流量的响应曲线

    Figure  5.  Response of fuel flow during deceleration

    图  减速过程中倒车阀开度的响应曲线

    Figure  6.  Response of astern valve position during deceleration

    图  减速过程中主蒸汽流量的响应曲线

    Figure  7.  Response of main steam flow during deceleration

    图  换向过程中螺旋桨转速的响应曲线

    Figure  8.  Response curve of propeller speed in reversing process

    图  换向过程中锅筒压力的响应曲线

    Figure  9.  Response curve of boiler drum pressure in reversing process

    图  10  换向过程中燃油流量的响应曲线

    Figure  10.  Response curve of fuel flow in reversing process

    图  11  换向过程中主蒸汽流量的响应曲线

    Figure  11.  Response curve of main steam flow in reversing process

    图  12  换向过程中回汽流量的响应曲线(快关阀有回汽)

    Figure  12.  Response curve of steam backflow in reversing process (quick closing valve with back-steam)

    表  仿真值及相对误差

    Table  1.  Simulation values and relative errors

    模型参数高速工况低速工况倒车工况
    仿真值相对误差/%仿真值相对误差/%仿真值相对误差/%
    锅筒压力1.0212.100.9871.300.9762.40
    过热蒸汽温度1.0171.701.0484.801.0131.30
    主机进汽流量1.0070.701.0353.500.9831.70
    螺旋桨转速0.9960.401.0090.900.9950.50
    下载: 导出CSV
  • [1] 吕建伟, 易慧, 刘中华. 舰船设计方案评估指标体系研究[J]. 船舶工程, 2005, 27(4): 53–57. doi: 10.3969/j.issn.1000-6982.2005.04.007

    LV J W, YI H, LIU Z H. Research on index system for evaluating warship design[J]. Ship Engineering, 2005, 27(4): 53–57 (in Chinese). doi: 10.3969/j.issn.1000-6982.2005.04.007
    [2] 朱泳, 金家善, 刘东东. 舰用蒸汽动力装置回汽刹车与回汽保护技术研究[J]. 汽轮机技术, 2012, 54(6): 404–407,411. doi: 10.3969/j.issn.1001-5884.2012.06.002

    ZHU Y, JIN J S, LIU D D. Study of back-steam braking and back-steam protection technology for marine steam power plants[J]. Turbine Technology, 2012, 54(6): 404–407,411 (in Chinese). doi: 10.3969/j.issn.1001-5884.2012.06.002
    [3] 朱泳, 金家善, 刘东东. 蒸汽动力舰船回汽制动机理与系统建模仿真[J]. 中南大学学报(自然科学版), 2013, 44(7): 2771–2777.

    ZHU Y, JIN J S, LIU D D. Numerical modeling and mechanism of back-steam braking for steam-powered ships[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2771–2777 (in Chinese).
    [4] 史智俊, 张国磊, 李彦军, 等. 回汽保护控制下舰用蒸汽动力系统响应规律[J]. 化工学报, 2015, 66(增刊 2): 287–293.

    SHI Z J, ZHANG G L, LI Y J, et al. Response pattern of marine steam power system under back-steam protection[J]. CIESC Journal, 2015, 66(Supp 2): 287–293 (in Chinese).
    [5] 曾帅, 史智俊, 王鹏, 等. 舰用蒸汽动力系统主汽压力控制方法仿真[J]. 化工学报, 2016, 67(增刊 1): 334–340.

    ZENG S, SHI Z J, WANG P, et al. Dynamic simulation of control for main steam pressure of marine steam power system[J]. CIESC Journal, 2016, 67(Supp 1): 334–340 (in Chinese).
    [6] 张国磊, 阙晨宇, 谭袖, 等. 舰船快速减速过程中主动回汽控制仿真[J]. 化工学报, 2018, 69(增刊 2): 358–364.

    ZHANG G L, QUE C Y, TAN X, et al. Simulation of initiative counter steam control during process of rapid deceleration in ship[J]. CIESC Journal, 2018, 69(Supp 2): 358–364 (in Chinese).
    [7] 张晓云, 王元慧, 李淑英, 等. 船用增压锅炉动态特性仿真研究[J]. 计算机仿真, 2010, 27(7): 346–349. doi: 10.3969/j.issn.1006-9348.2010.07.084

    ZHANG X Y, WANG Y H, LI S Y, et al. Research on dynamic characteristic simulation of marine supercharged boiler[J]. Computer Simulation, 2010, 27(7): 346–349 (in Chinese). doi: 10.3969/j.issn.1006-9348.2010.07.084
    [8] TUCAKOVIC D R, STEVANOVIC V D, ZIVANOVIC T, et al. Thermal-hydraulic analysis of a steam boiler with rifled evaporating tubes[J]. Applied Thermal Engineering, 2007, 27(2/3): 509–519.
    [9] 朱泳, 金家善, 严志腾, 等. 船用增压锅炉响应负荷突降的特性仿真分析[J]. 中南大学学报(自然科学版), 2013, 44(9): 3678–3686.

    ZHU Y, JIN J S, YAN Z T, et al. Simulation analysis of responding characteristics on abrupt load dropping for marine supercharged boilers[J]. Journal of Central South University (Science and Technology), 2013, 44(9): 3678–3686 (in Chinese).
    [10] 王成. 基于GSE的增压锅炉系统动态性能仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    WANG C. Simulation research on dynamic performance of supercharged boiler system based on GSE[D]. Harbin: Harbin Engineering University, 2012 (in Chinese).
    [11] 杜德君. 船用锅炉与汽轮机动态仿真及控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    DU D J. Research on the modeling and the control of supercharged boiler and steam turbine[D]. Harbin: Harbin Engineering University, 2007 (in Chinese).
    [12] 朱齐丹, 张静巧, 张妤. 基于遗传算法改进的变偏置双交叉限幅燃烧控制系统设计[C]//中国指挥控制大会论文集. 北京: [s. n.], 2013: 81–86.

    ZHU Q D, ZHANG J Q, ZHANG Y. Design of variable bias double cross limiting combustion control system based on improved genetic algorithm[C]//Proceedings of China Command and Control Conference. Beijing: [s. n.], 2013: 81–86 (in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  169
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2021-03-23
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回