Leakage rate index allocation of reactor safety vessel for floating nuclear power plants
-
摘要:
目的 为了探索船用堆安全壳整体和局部泄漏率水平,明确安全壳密封性试验验收准则标准,并开展安全壳周围舱室的气载放射性物质浓度分析。 方法 基于陆上核电站安全壳密封性试验标准,根据“标准分析−提出指标−验证指标”的总体思路,开展浮动核电站泄漏率指标分配、泄漏率计算和可行性分析研究。 结果 结果表明,设计基准事故工况下,浮动核电站安全壳整体泄漏率应控制在3‰/24 h左右,B类和C类贯穿件泄漏率分配分别占整体泄漏率的10%和50%;在试验工况下,安全壳整体泄漏率考虑25%的设计余量。 结论 泄漏率数值分析计算结果满足指标要求,并具有较好的设计余量,对明确安全壳密封性试验验收准则具有重要参考价值。 Abstract:Objective The purpose of this paper is to clarify the overall and local leakage rates of marine reactor safety vessel, establish the acceptance criteria of sealing test for reactor safety vessel and analyze the concentration of airborne radioactive material in surrounding cabins. Methods Based on the sealing test standard of land-based nuclear power plants, a study on index allocation and calculation of leakage rate as well as feasibility analysis of floating nuclear power plants (FNPP) are carried out in accordance with the general procedure of "standard analysis-indices proposing-indices verification". Results The results show that the proposed overall leakage rate of the reactor safety vessel of FNPP is about 3‰/24 h, and the leakage rate distribution of the penetrators of B & C types account for 10% and 50% of the overall leakage rate respectively under design basis accident conditions. During the sealing test, the overall leakage rate of the reactor safety vessel should be considered at 25% of the design margin. Conclusion The calculated leakage rate of FNPP meet the requirements of the index and the design margin is desirable, which is of great reference value for the establishment of containment sealing test acceptance criteria. -
Key words:
- floating nuclear power plant /
- reactor safety vessel /
- leakage rate
-
表 1 泄漏率试验的安全壳参数
Table 1. Parameters of the safety vessel for leakage rate test
序号 参数 数值 1 空气体积/m3 ~2 000 2 事故压力/MPa ~0.7 3 事故温度/℃ ~160 表 2 浮动核电站安全壳贯穿件汇总
Table 2. Summary of penetrators for the FNPP
序号 名称 规格*/mm 数量 1 换料口盖 1 1 2 检修口盖 0.5 1 3 人员闸门 0.2 1 4 电气贯穿件 0.08 16 5 机械贯穿件 0.002 5~0.075 73 *规格数据已归一化处理 表 3 安全壳泄漏率试验总体参数
Table 3. General parameters of leakage rate test for the safety vessel
参数 数值 试验压力Pe/ MPa ~0.7 安全壳容积V/m3 ~2 000 事故工况下安全壳最大泄漏率Fa/(%·24 h−1) 0.3 试验工况下安全壳最大泄漏率La/(%·24 h−1) 0.213 试验工况下安全壳实际允许泄漏率La0/(%·24 h−1) 0.159 试验工况下安全壳允许泄漏空气标准体积△V0/(Nm3·h−1) 0.785 表 4 浮动核电站局部泄漏率指标分配
Table 4. Distribution of local leakage rate indices of FNPP
试验类型 部件 占La0的分配值之比 比例/% 绝对值/(Nm3·h−1) B类 换料口盖 5 0.039 28 检修口盖 2.5 0.019 64 耐压屏蔽圆门 1.5 0.011 78 电气贯穿件 1 0.007 86 C类 隔离阀 50 0.392 80 表 5 贯穿件泄漏率的计算值及其与分配值之比
Table 5. Calculated leakage rate and calculation-distribution ratio of penetrators
名称 分配泄漏率/(Nm3·h−1) 计算泄漏率/(Nm3·h−1) 计算值与分配值之比/% 换料口盖 0.039 28 0.012 56 31.98 设备检修口盖 0.019 64 0.006 28 31.98 耐压屏蔽圆门 0.011 78 0.002 51 21.30 电气贯穿件 0.007 86 0.000 57 7.26 合计 0.078 56 0.021 92 27.9 表 6 隔离阀泄漏率的计算值及其与分配值之比
Table 6. Calculated leakage rate and calculation-distribution ratio for the islation valve
名称 分配泄漏率/(Nm3·h−1) 计算泄漏率/(Nm3·h−1) 计算值与分配值之比/% 一般管道 0.392 80 0.166 91 74.50 进、排风管 0.392 80 0.053 88 74.50 主蒸汽管 0.392 80 0.047 89 74.50 主给水管 0.392 80 0.023 95 74.50 表 7 陆核与海核泄漏率总体参数对比
Table 7. Comparison of overall parameters between land-based plant and FNPP
参数 秦山核电厂 浮动核电站 安全壳容积/m3 ~50 000 ~2 000 试验压力/MPa ~0.37 ~0.7 安全壳最大允许泄漏率
La/(%·24 h−1)0.22 0.213 安全壳实际允许泄漏率La0/(%·24 h−1) 0.165 0.15 安全壳允许泄漏空气标准体积
△V0/(Nm3·h−1)14.2 0.785 分配泄漏率 B类 10%La0 10%La0 C类 50%La0 50%La0 计算值与分配泄漏率
之比/%B类 74.79 27.90 C类 9.53 74.50 -
[1] HAD 102/06—1990. 核电厂反应堆安全壳系统的设计[S]. 北京: 国家核安全局, 1990.HAD 102/06—1990. Design of containment systems for nuclear power plants[S]. BeiJing: NNSA, 1990(in Chinese). [2] 黄志鹏. 浅谈核电站安全壳结构设计[J]. 科学技术创新, 2018(21): 179–180. doi: 10.3969/j.issn.1673-1328.2018.21.110HUANG Z P. Structural design of containment vessel in nuclear power plant[J]. Science and Technology Innovation, 2018(21): 179–180 (in Chinese). doi: 10.3969/j.issn.1673-1328.2018.21.110 [3] 谭美, 李鹏凡, 郭健, 等. 海洋环境条件下浮动堆安全壳设计[J]. 中国舰船研究, 2020, 15(1): 107–112, 144. doi: 10.19693/j.issn.1673-3185.01689TAN M, LI P F, GUO J, et al. Design of floating nuclear power plant containment under marine environment conditions[J]. Chinese Journal of Ship Research, 2020, 15(1): 107–112, 144 (in Chinese). doi: 10.19693/j.issn.1673-3185.01689 [4] 赵旭, 晏桂珍, 丁海明. AP1000钢制安全壳结构整体性试验介绍[J]. 核科学与工程, 2018, 38(2): 204–210. doi: 10.3969/j.issn.0258-0918.2018.02.004ZHAO X, YAN G Z, DING H M. Introduction to structural integrity test of AP1000 steel containment vessel[J]. Nuclear Science and Engineering, 2018, 38(2): 204–210 (in Chinese). doi: 10.3969/j.issn.0258-0918.2018.02.004 [5] 章春伟, 杨永灯, 乔宇, 等. 安全壳泄漏率在线监测系统原理及数据分析[J]. 核安全, 2014, 13(2): 55–60. doi: 10.3969/j.issn.1672-5360.2014.02.011ZHANG C W, YANG Y D, QIAO Y, et al. The principle and data analysis of online monitoring system of containment leak rate[J]. Nuclear Safety, 2014, 13(2): 55–60 (in Chinese). doi: 10.3969/j.issn.1672-5360.2014.02.011 [6] 褚英杰, 欧阳钦. 安全壳整体泄漏率计算方法的比较分析[J]. 核动力工程, 2010, 31(6): 33–37.CHU Y J, OUYANG Q. Comparison and analysis of methods for containment leakage rate calculation[J]. Nuclear Power Engineering, 2010, 31(6): 33–37 (in Chinese). [7] IMO Res. A. 491(XⅡ)-1981. 核商船安全规则[S].伦敦: 国际海事组织, 1981.IMO Res. A. 491(X II)-1981. Safety rules for nuclear merchant ships [S]. London: IMO, 1981. [8] 陈艳霞, 谭美, 陈强, 等. 基于安全围壁的浮动堆旁路泄漏设计研究[J]. 核动力工程, 2020, 41(3): 133–136.CHEN Y X, TAN M, CHEN Q, et al. Evaluation of bypass leakage design idea for floating nuclear power plants based on safety enclosure[J]. Nuclear Power Engineering, 2020, 41(3): 133–136 (in Chinese). [9] 王军龙, 刘嘉嘉, 刘聪, 等. 浮动式核电厂烟羽应急计划区划分[J]. 原子能科学技术, 2017, 51(4): 671–675. doi: 10.7538/yzk.2017.51.04.0671WANG J L, LIU J J, LIU C, et al. Definition of plume emergency planning zone for floating nuclear power plant[J]. Atomic Energy Science and Technology, 2017, 51(4): 671–675 (in Chinese). doi: 10.7538/yzk.2017.51.04.0671 [10] NB/T 20185—2012. 压水堆核电厂厂内辐射分区设计准则[S].北京: 国家能源局, 2012.NB/T 20185—2012. Design criteria for radiation zoning of PWR nuclear power plant[S]. BeiJing: NEA, 2012. [11] NB/T 20018-2010.压水堆核电厂安全壳密封性试验[S]. 北京: 中国核工业集团公司, 2010.NB/T 20018-2010. Containment Test of Pressurized Water Reactor Nuclear Power Plant[S]. BeiJing: CNNC,2010. [12] RCC-G-1986. 核电站土建设计建造规则 [S]. 1986.RCC-G-1986. Civil design and construction code[S]. 1986. (in Chinese) [13] 国家技术监督局. 2×600MW压水堆核电厂核岛系统设计建造规范: GB/T 15761-1995[S]. 北京: 中国标准出版社, 1996.The State Bureau of Quality and Technical Supervision. Design and construction rules for nuclear island systems of 2×600MW PWR nuclear power plants: GB/T 15761—1995[S]. Beijing: China Standard Press, 1996 (in Chinese). [14] 周新蓉, 吴晨晖, 李海东. 海洋环境下浮动堆设备闸门密封性能分析[J]. 压力容器, 2020, 37(2): 51–55. doi: 10.3969/j.issn.1001-4837.2020.02.008ZHOU X R, WU C H, LI H D. Sealing analysis of equipment gate valve under marine environment[J]. Pressure Vessel Technology, 2020, 37(2): 51–55 (in Chinese). doi: 10.3969/j.issn.1001-4837.2020.02.008 [15] GB/T 13538-2017. 核电厂安全壳电气贯穿件[S]. 北京: 中国核工业集团公司, 2017.GB/T 13538-2017. Nuclear Power Plant Containment Electrical Penetrations[S].BeiJing: CNNC,2017. [16] EJ/T 331-92.失水事故后流体系统的安全壳隔离装置[S].北京: 中国核工业集团公司, 1992.EJ/T 331-92. Containment Isolation Device For Fluid System After Loss of Water Accident[S]. BeiJing: CNNC,1992. [17] 闫治平, 黄淑英. 漏率与压力关系的研究[J]. 中国空间科学技术, 1999(2): 42–46.YAN Z P, HUANG S Y. A study of relation to leak rate and pressure[J]. Chinese Space Science and Technology, 1999(2): 42–46 (in Chinese). [18] 刘吉, 党杰, 陈镇, 等. 模拟刚性正压漏孔的泄漏率与压力关系研究[J]. 真空科学与技术学报, 2017, 37(12): 1141–1145.LIU J, DANG J, CHEN Z, et al. Impact of pressure difference on leakage rate from rigid positive standard leak: a theoretical and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(12): 1141–1145 (in Chinese). [19] 高忠勇, 戴长山, 吴文宏. 秦山核电厂安全壳系统B、C类密封性试验[J]. 核科学与工程, 1992, 12(3): 200–205.GAO Z Y, DAI C S, WU W H. Primary reactor containment leakage tests (B & C types) for Qinshan nuclear power plant[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(3): 200–205 (in Chinese). -