留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静压下考虑腔压的吸声覆盖层吸声性能分析

董文凯 陈美霞

董文凯, 陈美霞. 静压下考虑腔压的吸声覆盖层吸声性能分析[J]. 中国舰船研究, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186
引用本文: 董文凯, 陈美霞. 静压下考虑腔压的吸声覆盖层吸声性能分析[J]. 中国舰船研究, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186
DONG W K, CHEN M X. Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure[J]. Chinese Journal of Ship Research, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186
Citation: DONG W K, CHEN M X. Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure[J]. Chinese Journal of Ship Research, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186

静压下考虑腔压的吸声覆盖层吸声性能分析

doi: 10.19693/j.issn.1673-3185.02186
基金项目: 国家自然科学基金资助项目(51779098,52071152)
详细信息
    作者简介:

    董文凯,男,1998年生,硕士生。研究方向:结构振动与噪声控制。E-mail:912782749@qq.com

    陈美霞,女,1975年生,博士,教授。研究方向:结构振动与噪声控制。E-mail:chenmx26@163.com

    通信作者:

    陈美霞

  • 中图分类号: U661.44

Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure

知识共享许可协议
静压下考虑腔压的吸声覆盖层吸声性能分析董文凯,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  潜艇外壳表面敷设的水下吸声覆盖层在高静水压力作用挤压后的形状、材料参数都会发生改变,使吸声性能受到较大影响,故研究此影响对于潜艇声隐身性具有重要意义。  方法  考虑空腔内压力对静压下覆盖层形变的作用及吸声性能的影响,基于轴对称有限元仿真,计算含圆柱形空腔水下吸声覆盖层的单胞变形;将形变量导入吸声覆盖层的一维理论模型,得到覆盖层的理论吸声系数曲线;利用形变后的几何模型开展声−固耦合对比分析,验证理论解析与数值仿真两种方法求解吸声系数的有效性。  结果  结果表明,不考虑材料参数变化,在静压下吸声覆盖层发生了单胞轴向和空腔径向收缩,吸声系数曲线向高频移动,腔压抵抗了静压下的收缩,减弱了曲线向高频移动的趋势,而吸声曲线上出现的尖锐谷值则为激起的腔内空气声腔模态所致。  结论  研究结果对于静压下吸声覆盖层吸声性能的预报具有一定的参考价值。
  • 图  水下吸声覆盖层单元结构图

    Figure  1.  Structural diagram of anechoic coating layer unit

    图  吸声覆盖层单元等效图

    Figure  2.  Equivalent diagram of anechoic coating layer unit

    图  静压下吸声覆盖层吸声系数的计算流程图

    Figure  3.  Flowchart of sound absorption coefficient calculation for anechoic coating layer under hydrostatic pressure

    图  均匀圆柱形管段示意图

    Figure  4.  Illustration of uniform cylindrical cavity section

    图  渐变腔等效为多层介质及传递矩阵法示意图

    Figure  5.  Illustration of transition cavity equivalent to multilayer medium and transfer matrix method

    图  运用COMSOL计算静压下吸声覆盖层单元形变示意图

    Figure  6.  COMSOL calculation of deformation of anechoic coating unit cell under hydrostatic pressure

    图  吸声覆盖层单元的三维和二维轴对称有限元模型

    Figure  7.  Three and two-dimensional axi-symmetric finite element models of anechoic coating unit cell

    图  两种模型与文献[13]关于吸声覆盖层单元吸声系数对比

    Figure  8.  Sound absorption coefficient comparison of anechoic coating unit calculated by the two models with ref. [13]

    图  吸声覆盖层单元几何图

    Figure  9.  Geometric illustration of anechoic coating unit cell

    图  10  不考虑腔内压力时不同静压下含空腔吸声覆盖层的形变

    Figure  10.  Deformation of anechoic coating layer under different hydrostatic pressures without considering cavity pressure

    图  11  不同静水压下吸声覆盖层吸声系数

    Figure  11.  Sound absorption coefficients of anechoic coating layer under different hydrostatic pressures

    图  12  不同静压下考虑/无腔压的吸声覆盖层吸声系数对比

    Figure  12.  Comparison of sound absorption coefficients of anechoic coating layer with and without considering cavity pressure under different hydrostatic pressures

    图  13  空腔中有/无空气的吸声覆盖层吸声系数对比

    Figure  13.  Comparison of sound absorption coefficient of anechoic coating layer with and without air in cavity

    表  吸声覆盖层单元几何尺寸

    Table  1.  Geometric dimensions of anechoic coating unit cell

    尺寸数值
    覆盖层长度la/mm50
    空腔长度lb/mm40
    空腔外径ra/mm8.4
    空腔内径rb/mm2.1
    下载: 导出CSV

    表  吸声覆盖层橡胶材料参数

    Table  2.  Rubber material parameters of anechoic coating

    参数数值
    静态动态
    杨氏模量/Pa8.9e68.9e6+2.3e3*f−0.01*f 2
    泊松比0.4960.496
    损耗因子0.2+1.2e−4*f−8.2e−9*f 2
    密度/(kg·m−3)900900
    下载: 导出CSV

    表  不同静压下腔体声腔模态频率和吸声第1及第2谷值频率

    Table  3.  The cavity modal frequency and the 1st and 2nd valley frequencies of sound absorption under different hydrostatic pressures

    参数静压/MPa
    00.51.52.5
    空腔长度lb/mm40.039.438.337.2
    f10模态频率/Hz4 287.504 348.534 474.814 606.64
    第1谷值频率/Hz4 2814 3204 3984 478
    f20模态频率/Hz8 575.008 697.068 949.639 213.28
    第2谷值频率/Hz8 5618 6548 8208 992
    下载: 导出CSV
  • [1] GAUNAURD G. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. The Journal of the Acoustical Society of America, 1977, 62(2): 298–307. doi: 10.1121/1.381528
    [2] 朱蓓丽, 黄修长. 潜艇隐身关键技术—声学覆盖层的设计[M]. 上海: 上海交通大学出版社, 2012.

    ZHU B L, HUANG X C. Key Technology of Submarine Acoustic Stealth: Design of Acoustic Coating[M]. Shanghai: Shanghai Jiao Tong University Press, 2012 (in Chinese).
    [3] CERVENKA P, CHALLANDE P. A new efficient algorithm to compute the exact reflection and transmission factors for plane waves in layered absorbing media (liquids and solids)[J]. The Journal of the Acoustical Society of America, 1991, 89(4): 1579–1589. doi: 10.1121/1.400993
    [4] 何世平. 粘弹性圆柱管中波的传播研究及吸声覆盖层声学特性研究[D]. 上海: 上海交通大学, 2004.

    HE S P. Research of wave propagation in viscoelastic tube and analysis of acoustic characteristics of anechoic coating[D]. Shanghai: Shanghai Jiao Tong University, 2004 (in Chinese).
    [5] 何世平, 汤渭霖, 范军. 无限长粘弹性圆柱管中轴对称波的传播模式和衰减[J]. 声学学报, 2005, 30(3): 249–254. doi: 10.3321/j.issn:0371-0025.2005.03.009

    HE S P, TANG W L, FAN J. Axisymmetric wave propagation and attenuation along an infinite viscoelastic cylindrical tube[J]. Acta Acustica, 2005, 30(3): 249–254 (in Chinese). doi: 10.3321/j.issn:0371-0025.2005.03.009
    [6] 汤渭霖, 何世平, 范军. 含圆柱形空腔吸声覆盖层的二维理论[J]. 声学学报, 2005, 30(4): 289–295. doi: 10.3321/j.issn:0371-0025.2005.04.001

    TANG W L, HE S P, FAN J. Two-dimensional model for acoustic absorption of viscoelastic coating containing cylindrical holes[J]. Acta Acustica, 2005, 30(4): 289–295 (in Chinese). doi: 10.3321/j.issn:0371-0025.2005.04.001
    [7] 姜闻文, 陈光冶, 朱彦. 静水压变化下橡胶结构吸声性能的计算与分析[J]. 噪声与振动控制, 2006, 26(5): 55–57, 73. doi: 10.3969/j.issn.1006-1355.2006.05.016

    JIANG W W, CHEN G Y, ZHU Y. Computation and analysis of sound absorption performance of rubber structures under variable hydraulic pressure[J]. Noise and Vibration Control, 2006, 26(5): 55–57, 73 (in Chinese). doi: 10.3969/j.issn.1006-1355.2006.05.016
    [8] 陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报, 2011, 45(9): 1340–1344, 1350.

    TAO M, ZHUO L K. Effect of hydrostatic pressure on acoustic performance of sound absorption coating[J]. Journal of Shanghai Jiao Tong University, 2011, 45(9): 1340–1344, 1350 (in Chinese).
    [9] 张冲, 何世平, 易少强. 静压下球形空腔吸声覆盖层的建模与性能分析[J]. 船舶力学, 2016, 20(7): 909–916. doi: 10.3969/j.issn.1007-7294.2016.07.014

    ZHANG C, HE S P, YI S Q. Model and absorption performance of anechoic coating embedding sphere cavities[J]. Journal of Ship Mechanics, 2016, 20(7): 909–916 (in Chinese). doi: 10.3969/j.issn.1007-7294.2016.07.014
    [10] 杨立军, 张冲, 楼京俊, 等. 静压下多层材料椭球形空腔吸声覆盖层的吸声性能分析[J]. 舰船科学技术, 2017, 39(3): 54–57. doi: 10.3404/j.issn.1672-7619.2017.03.011

    YANG L J, ZHANG C, LOU J J, et al. Absorption performance of the multi-layered material anechoic coating embedding spheroidicity cavities[J]. Ship Science and Technology, 2017, 39(3): 54–57 (in Chinese). doi: 10.3404/j.issn.1672-7619.2017.03.011
    [11] 黄修长, 朱蓓丽, 胡碰, 等. 静水压力下橡胶动态力学参数的声管测量方法[J]. 上海交通大学学报, 2013, 47(10): 1503–1508, 1519.

    HUANG X C, ZHU B L, HU P, et al. Measurement of dynamic properties of rubber under hydrostatic pressure by water-filled acoustic tube[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1503–1508, 1519 (in Chinese).
    [12] 陶猛, 江坤. 基于数值-解析法测量静压条件下阻尼材料动态力学参数[J]. 振动与冲击, 2016, 35(7): 96–101.

    TAO M, JIANG K. Dynamic parameters measurement of damping materials under hydrostatic pressure based on a hybrid numerical-analytical method[J]. Journal of Vibration and Shock, 2016, 35(7): 96–101 (in Chinese).
    [13] YE C Z, LIU X W, XIN F X, et al. Influence of hole shape on sound absorption of underwater anechoic layers[J]. Journal of Sound and Vibration, 2018, 426: 54–74. doi: 10.1016/j.jsv.2018.04.008
  • ZG2186_en.pdf
    ZG2186_en.pdf
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  359
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-02-07
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回