An improved random forest-Monte Carlo method and application for structural reliability analysis of A-type independent liquid tank support structure
-
摘要:
目的 随着液化天然气(LNG)船舶结构研究和设计深度的提高,需要有能够快速和准确地评估不确定性因素的可靠性分析方法。为此,提出基于改进随机森林−蒙特卡罗(RF-MC)法来解决A型独立液舱支座结构失效概率的计算问题。 方法 首先,根据不确定性因素的概率分布,使用MC法生成样本集;然后,以局部离群因子为准则,筛选出失效面附近的样本点,再对筛选出的样本点进行有限元计算后添加至训练集,通过重复训练随机森林近似模型,直至满足精度要求;最后,使用近似模型判别样本点是否失效,结合MC法计算结构的失效概率。 结果 综合考虑算法的准确率、复杂度和效率并结合算例1和2,可以发现在分析可靠性问题时改进RF-MC法比MC和BP-MC等方法具有更大优势。算例3的应用结果表明了改进RF-MC法在A型独立液舱支座结构可靠性分析中的适用性。 结论 研究结果可为LNG船舶的优化设计提供可行的技术方案。 Abstract:Objectives In response to the increasing depth of research and design on liquefied natural gas (LNG) ship structures, higher requirements are put forward for a reliability analysis method that can quickly and accurately evaluate uncertain factors. This paper proposes a method based on an improved random forest-Monte Carlo method (RF-MC) to solve the calculation of the failure probability of A-type independent liquid tank support structures. Methods First, the MC method is used to generate a sample set according to the probability distribution of uncertain factors, then take the local outlier factor (LOF) as the criterion for filtering out sample points near the failure surface. After selecting the sample points, they are calculated using finite element software and added to the training set to train the random forest (RF) model. The generation, filtering and training process is repeated until the approximate model meets the accuracy requirements. Finally, the approximate model is used to determine whether the sample points are invalid, then combined with the MC method to calculate the failure probability of the structure. Results Considering the accuracy, complexity and efficiency of the algorithm, and combined with Cases 1 and 2, it is found that the improved RF-MC method has better advantages than MC or biased probability (BP)-MC in analyzing reliability problems. The results of Case 3 show applicability of the method in reliability analysis of an A-type independent liquid tank support structure. Conclusions This study provides a feasible technical solution for future optimization design of liquefied gas carriers. -
Key words:
- structural reliability /
- local outlier factor /
- random forest
-
表 1 算例1计算结果
Table 1. Calculation results of Case 1
方法 失效概率$ {P}_{\mathrm{f}} $ 相对误差$/\text{%}$ 样本数量 MC $ \text{2.85}\times {10}^{-5} $ − $ \text{5}\times {10}^{7} $ BP-MC $ \text{3.22}\times {10}^{-5} $ $ 12.98 $ $ 124 $ 改进RF-MC $ \text{3.1}\text{5}\times {10}^{-5} $ $ 4.91 $ $ 124 $ 表 2 基本随机变量统计特征值
Table 2. Statistical characteristic values of basic random variable
随机变量$ /{\mathrm{c}\mathrm{m}}^{2} $ 均值$ \mu $ 标准差$ \sigma $ 分布类型 $ {A}_{1} $ 83.87 8.387 正态 $ {A}_{2} $ 12.90 1.290 正态 $ {A}_{3} $ 58.06 5.806 正态 表 3 算例2计算结果
Table 3. Calculation results of Case 2
方法 失效概率$ {P}_{\mathrm{f}} $ 相对误差$ /\text{%} $ 样本数量 MC $\text{0.176}\;\text{40}$ − $ {10}^{5} $ 改进RF-MC $\text{0.179}\;\text{85}$ $ 1.96 $ $ 200 $ 表 4 A型液舱支座结构的设计变量分布
Table 4. Design variables distribution of A-type liquid tank support
类别 编号 变量 参数1 参数2 分布类型 支座结构支反力 $ {X}_{1} $ $ f_1/\mathrm{N} $ $ 5.24\times {10}^{6} $ $ 5.31\times {10}^{6} $ 均匀分布 $ {X}_{2} $ $ f_1/\mathrm{N} $ $ 4.72\times {10}^{6} $ $ 4.86\times {10}^{6} $ 均匀分布 $ {X}_{3} $ $ f_2/\mathrm{N} $ $ 2.57\times {10}^{6} $ $ 2.59\times {10}^{6} $ 均匀分布 $ {X}_{4} $ $ f_2/\mathrm{N} $ $ 2.74\times {10}^{6} $ $ 2.76\times {10}^{6} $ 均匀分布 $ {X}_{5} $ $ f_2/\mathrm{N} $ $ 1.94\times {10}^{6} $ $ 2.02\times {10}^{6} $ 均匀分布 $ {X}_{6} $ $ f_3/\mathrm{N} $ $ 2.09\times {10}^{6} $ $ 2.13\times {10}^{6} $ 均匀分布 $ {X}_{7} $ $ f_3/\mathrm{N} $ $ 1.98\times {10}^{6} $ $ 2.07\times {10}^{6} $ 均匀分布 $ {X}_{8} $ $ f_3/\mathrm{N} $ $ 2.36\times {10}^{6} $ $ 2.43\times {10}^{6} $ 均匀分布 $ {X}_{9} $ $ f_3/\mathrm{N} $ $ 2.81\times {10}^{6} $ $ 2.83\times {10}^{6} $ 均匀分布 $ {X}_{10} $ $ f_3/\mathrm{N} $ $ 3.97\times {10}^{6} $ $ 3.99\times {10}^{6} $ 均匀分布 $ {X}_{11} $ $ f_3/\mathrm{N} $ $ 4.87\times {10}^{6} $ $ 4.91\times {10}^{6} $ 均匀分布 板材厚度 $ {X}_{12} $ $ d_1/\mathrm{m}\mathrm{m} $ 14 1.4 正态分布 $ {X}_{13} $ $ d_1/\mathrm{m}\mathrm{m} $ 12 1.2 正态分布 $ {X}_{14} $ $ d_2/\mathrm{m}\mathrm{m} $ 18 1.8 正态分布 $ {X}_{15} $ $ d_3/\mathrm{m}\mathrm{m} $ 18 1.8 正态分布 $ {X}_{16} $ $ d_4/\mathrm{m}\mathrm{m} $ 11 1.1 正态分布 $ {X}_{17} $ $ d_4/\mathrm{m}\mathrm{m} $ 11 1.1 正态分布 $ {X}_{18} $ $ d_5/\mathrm{m}\mathrm{m} $ 18 1.8 正态分布 $ {X}_{19} $ $ d_6/\mathrm{m}\mathrm{m} $ 14 1.4 正态分布 纵骨尺寸 $ {X}_{20} $ $ d_7/\mathrm{m}\mathrm{m} $ 12 1.2 正态分布 $ {X}_{21} $ $ d_8/\mathrm{m}\mathrm{m} $ 12 1.2 正态分布 表 5 算例3计算结果
Table 5. Calculation results of Case 3
方法 失效概率$ {P}_{\mathrm{f}} $ 相对误差$ /\text{%} $ 样本数量 MC $ {2.53\times 10}^{-2} $ − $ {10}^{5} $ 改进RF-MC $ \text{2.46}{\times 10}^{-2} $ $ 2.77 $ $ 250 $ -
[1] CHOI S K, CANFIELD R A, GRANDHI R V. Reliability-based structural design[M]. London: Springer, 2007. [2] 盂广伟, 李广博, 李锋, 等. 多项式基函数神经网络的结构可靠性分析[J]. 北京航空航天大学学报, 2013, 39(11): 1460–1463.MENG G W, LI G B, LI F, et al. Structural reliability analysis based on polynomial basis function neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1460–1463 (in Chinese). [3] 金伟良, 袁雪霞. 基于LS-SVM的结构可靠度响应面分析方法[J]. 浙江大学学报(工学版), 2007, 41(1): 44–47,108. doi: 10.3785/j.issn.1008-973X.2007.01.009JIN W L, YUAN X X. Response surface method based on LS-SVM for structural reliability analysis[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(1): 44–47,108 (in Chinese). doi: 10.3785/j.issn.1008-973X.2007.01.009 [4] 李放, 王德禹. 基于改进梯度提升决策树—蒙特卡罗法的超大型集装箱船绑扎桥可靠性分析[J]. 中国舰船研究, 2020, 15(2): 63–69. doi: 10.19693/j.issn.1673-3185.01613LI F, WANG D Y. Reliability analysis of lashing bridge of ultra-large container ship based on improved gradient boosting decision tree-Monte Carlo method[J]. Chinese Journal of Ship Research, 2020, 15(2): 63–69 (in Chinese). doi: 10.19693/j.issn.1673-3185.01613 [5] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[J]. ACM Sigmod Record, 2000, 29(2): 93–104. doi: 10.1145/335191.335388 [6] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324 [7] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123–140. [8] 魏东海, 王磊, 赵志超, 等. 随机森林算法在柴油机故障诊断中的应用[J]. 机械设计与制造, 2020(7): 63–66. doi: 10.3969/j.issn.1001-3997.2020.07.016WEI D H, WANG L, ZHAO Z C, et al. Application of random forest algorithm in fault diagnosis of diesel engine[J]. Machinery Design & Manufacture, 2020(7): 63–66 (in Chinese). doi: 10.3969/j.issn.1001-3997.2020.07.016 [9] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119–139. doi: 10.1006/jcss.1997.1504 [10] 王光远. 论不确定性结构力学的发展[J]. 力学进展, 2002, 32(2): 205–211. doi: 10.3321/j.issn:1000-0992.2002.02.005WANG G Y. On the development of uncertain structural mechanics[J]. Advances in Mechanics, 2002, 32(2): 205–211 (in Chinese). doi: 10.3321/j.issn:1000-0992.2002.02.005 [11] 王光远. 未确知信息及其数学处理[J]. 哈尔滨建筑工程学院学报, 1990, 23(4): 1–9.WANG G Y. Unascertained information and its mathematical treatment[J]. Journal of Harbin University of Civil Engineering and Architecture, 1990, 23(4): 1–9 (in Chinese). [12] 冯昕宇. 基于降维算法的结构可靠性研究[D]. 长春: 吉林大学, 2017.FENG X Y. Structural reliability research based on dimensionality reduction algorithm[D]. Changchun: Jilin University, 2017 (in Chinese). [13] RUBINSTEIN R Y. Simulation and the Monte Carlo method[M]. New York: John Wiley and Sons, Inc. , 1981. [14] 陈松坤, 王德禹. 基于神经网络的蒙特卡罗可靠性分析方法[J]. 上海交通大学学报, 2018, 52(6): 687–692.CHEN S K, WANG D Y. An improved Monte Carlo reliability analysis method based on neural network[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 687–692 (in Chinese). [15] 中国船级社. 钢制海船入级规范 [S]. 北京: 人民交通出版社, 2012.China Classification Society. Rules for classification of sea-going steel ships[S]. Beijing: China Communication Press, 2012 (in Chinese). -