留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伴随方法的舰船推进器优化设计

王睿 熊鹰

王睿, 熊鹰. 基于伴随方法的舰船推进器优化设计[J]. 中国舰船研究, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131
引用本文: 王睿, 熊鹰. 基于伴随方法的舰船推进器优化设计[J]. 中国舰船研究, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131
WANG R, XIONG Y. Propeller optimization design based on the adjoint method[J]. Chinese Journal of Ship Research, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131
Citation: WANG R, XIONG Y. Propeller optimization design based on the adjoint method[J]. Chinese Journal of Ship Research, 2022, 17(1): 36–41 doi: 10.19693/j.issn.1673-3185.02131

基于伴随方法的舰船推进器优化设计

doi: 10.19693/j.issn.1673-3185.02131
基金项目: 国家自然科学基金资助项目(51479207)
详细信息
    作者简介:

    王睿,男,1990年生,博士,工程师

    熊鹰,男,1958年生,博士,教授,博士生导师。研究方向:舰船水动力性能。E-mail: xiongying0920@126.com

    通信作者:

    王睿

  • 中图分类号: U661.3

Propeller optimization design based on the adjoint method

知识共享许可协议
基于伴随方法的舰船推进器优化设计王睿,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为探索高效的螺旋桨优化设计方法,基于面元法开展伴随优化方法的研究。  方法  通过桨叶表面法向速度为零条件和等压库塔条件建立伴随方程,得到敏感导数求解式。以DTMB 4381螺旋桨为对象,分别运用伴随方法和传统的求解控制方程方法计算螺旋桨性能与参数之间的敏感导数;基于伴随方法对某螺旋桨进行敏感导数分析,再根据敏感导数分析结果进行几何参数优化,并将结果与ISIGHT优化平台中的粒子群算法(PSO)得到的结果进行对比。  结果  结果表明,采用伴随方法与传统的求解控制方程方法计算得到的结果具有较好的一致性,但伴随方法的计算效率更高,优化结果也优于PSO算法,且优化所用时间也少。  结论  研究表明,伴随方法在多参数螺旋桨优化设计中的计算效率优于智能算法。
  • 图  DTMB 4381桨螺距及拱弧敏感导数对比

    Figure  1.  Sensitive derivative comparison of pitch ratio and camber ratio of DTMB 4381 propeller

    图  HG01桨径向参数敏感导数对比结果

    Figure  2.  Comparison of sensitive derivative of HG01 propeller's radial parameters

    图  伴随方法优化前后几何参数对比结果

    Figure  3.  Comparison of parameters before and after optimization with the adjoint method

    图  ISIGHT优化平台的粒子群算法优化前后几何参数对比结果

    Figure  4.  Comparison of parameters before and after optimization with the PSO algorithm of ISIGHT

    表  优化结果对比

    Table  1.  The comparison of optimization results

    项目KT10KQη0CPmax计算时间/min
    初始桨0.1660.27640.6404−0.846
    伴随方法优化结果0−1.52%+1.59%−13.5%28
    粒子群方法优化结果0−1.45%+1.55%−2.95%438
    下载: 导出CSV
  • [1] GAGGERO S, TANI G, VILLA D, et al. Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft[J]. Applied Ocean Research, 2017, 64: 31–57. doi: 10.1016/j.apor.2017.01.018
    [2] 邬伟, 熊鹰. 一种抗空化翼型修形设计方法[J]. 上海交通大学学报, 2013, 47(6): 878–883,888.

    WU W, XIONG Y. A reshaping method for anti-cavitating hydrofoil design[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 878–883,888 (in Chinese).
    [3] KOYAMA K. Relation between the lifting surface theory and the lifting line theory in the design of an optimum screw propeller[J]. Journal of Marine Science and Technology, 2013, 18: 145–165. doi: 10.1007/s00773-012-0200-3
    [4] 黄斌, 熊鹰, 王波. 基于粒子群算法的螺旋桨侧斜分布优化[J]. 中国舰船研究, 2016, 11(6): 83–89. doi: 10.3969/j.issn.1673-3185.2016.06.013

    HUANG B, XIONG Y, WANG B. Application of particle swarm optimization theory in skew distribution of propeller[J]. Chinese Journal of Ship Research, 2016, 11(6): 83–89 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.013
    [5] 王超, 韩康, 汪春辉, 等. 冰区航行船舶推进器特殊性分析[J]. 中国舰船研究, 2019, 14(2): 1–7.

    WANG C, HAN K, WANG C H, et al. Analysis on the particularity of propulsor of ice-going ships[J]. Chinese Journal of Ship Research, 2019, 14(2): 1–7 (in Chinese).
    [6] LEE K J, HOSHINO T, LEE J H. A lifting surface optimization method for the design of marine propeller blades[J]. Ocean Engineering, 2014, 88: 472–479.
    [7] WANG C, YE L Y, CHANG X, et al. The study on optimization design of propeller pitch[J]. Journal of Coastal Research, 2015, 73(Supp1): 466–470.
    [8] 宋召运, 刘波, 程昊, 等. 基于改进粒子群算法的串列叶型优化设计[J]. 推进技术, 2016, 37(8): 1469–1476.

    SONG Z Y, LIU B, CHENG H, et al. Optimization of tandem blade based on modified particle swarm algorithm[J]. Journal of Propulsion Technology, 2016, 37(8): 1469–1476 (in Chinese).
    [9] SIKARWAR N, MORRIS P J. The use of an adjoint method for optimization of blowing in a convergent-divergent nozzle[J]. International Journal of Aeroacoustics, 2015, 14(1/2): 327–351. doi: 10.1260/1475-472X.14.1-2.327
    [10] BIAVA M, WOODGATE M, BARAKOS G N. Fully implicit discrete-adjoint methods for rotorcraft applications[J]. AIAA Journal, 2016, 54(2): 735–749. doi: 10.2514/1.J054006
    [11] 季路成, 李伟伟, 伊卫林. 伴随方法用于叶轮机优化设计的回顾与展望[J]. 航空发动机, 2011, 37(5): 53–57,62. doi: 10.3969/j.issn.1672-3147.2011.05.015

    JI L C, LI W W, YI W L. Retrospect and prospect for adjoint method applying to turbomachinery optimization design[J]. Aeroengine, 2011, 37(5): 53–57,62 (in Chinese). doi: 10.3969/j.issn.1672-3147.2011.05.015
    [12] PIRONNEAU O. On optimum design in fluid mechanics[J]. Journal of Fluid Mechanics, 1974, 64(1): 97–110. doi: 10.1017/S0022112074002023
    [13] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233–260. doi: 10.1007/BF01061285
    [14] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2): 412–423. doi: 10.2514/1.C031975
    [15] 李伟伟, 季路成, 伊卫林. 基于伴随方法的多级叶轮机三维叶片优化设计[J]. 工程热物理学报, 2014, 35(11): 2164–2167.

    LI W W, JI L C, YI W L. Blade shape optimization of multistage turbomachinery by adjoint method[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2164–2167 (in Chinese).
    [16] 王睿, 熊鹰, 王展智. 适用于整体求解吊舱推进器的定常面元法[J]. 推进技术, 2016, 37(5): 992–1000.

    WANG R, XIONG Y, WANG Z Z. A steady surface panel method suitable for calculation of podded propulsor as a whole[J]. Journal of Propulsion Technology, 2016, 37(5): 992–1000 (in Chinese).
    [17] WANG R, XIONG Y, WANG Z Z. A surface panel method for the analysis of hybrid contra-rotating shaft pod propulsor[J]. Ocean Engineering, 2017, 140: 97–104. doi: 10.1016/j.oceaneng.2017.05.022
    [18] 王波. 船用螺旋桨参数化分析及优化设计研究[D]. 武汉: 海军工程大学, 2013.

    WANG B. Research on optimization design and parameters analysis of marine propeller[D]. Wuhan: Naval University of Engineering, 2013 (in Chinese).
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  177
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-01
  • 修回日期:  2021-03-14
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回