Propeller optimization design based on the adjoint method
-
摘要:
目的 为探索高效的螺旋桨优化设计方法,基于面元法开展伴随优化方法的研究。 方法 通过桨叶表面法向速度为零条件和等压库塔条件建立伴随方程,得到敏感导数求解式。以DTMB 4381螺旋桨为对象,分别运用伴随方法和传统的求解控制方程方法计算螺旋桨性能与参数之间的敏感导数;基于伴随方法对某螺旋桨进行敏感导数分析,再根据敏感导数分析结果进行几何参数优化,并将结果与ISIGHT优化平台中的粒子群算法(PSO)得到的结果进行对比。 结果 结果表明,采用伴随方法与传统的求解控制方程方法计算得到的结果具有较好的一致性,但伴随方法的计算效率更高,优化结果也优于PSO算法,且优化所用时间也少。 结论 研究表明,伴随方法在多参数螺旋桨优化设计中的计算效率优于智能算法。 Abstract:Objectives In order to develop a highly efficient method for propeller design optimization, the adjoint method is studied based on surface panel method. Methods An adjoint equation is established under the conditions of zero normal velocity of blade and equal-pressure Kutta to obtain a formulae for solving sensitive derivative problem. A DTMB 4381 propeller is used as the research objective to calculate the sensitive derivatives of propeller performance to design parameters using the adjoint method and traditional method respectively for solving governing equation. Next, an analysis of senstive derivatives on a ship propeller design is carried out based on the adjoint method.The sensitive derivatives are then obtained and applied to optimize the geometric parameters of the propeller, achieving the optimal solutions which are compared with that by particle swarm optimization (PSO) algorithm of ISIGHT. Results The results indicate that the sensitive derivatives caluculated via the adjoint method are not only in good agreement with that by traditional method, but also offers much higher computation efficiency, generating optimal solutions of the propeller design superior to that by PSO algorithm with less time-consumption. Conclusions The research shows that the computation efficiency of the adjoint method is superior to traditional intelligent algorithms in multi-parameters optimization design of ship propellers. -
Key words:
- ship propeller /
- optimization design /
- adjoint method /
- surface panel method
-
表 1 优化结果对比
Table 1. The comparison of optimization results
项目 KT 10KQ η0 −CPmax 计算时间/min 初始桨 0.166 0.2764 0.6404 −0.846 − 伴随方法优化结果 0 −1.52% +1.59% −13.5% 28 粒子群方法优化结果 0 −1.45% +1.55% −2.95% 438 -
[1] GAGGERO S, TANI G, VILLA D, et al. Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft[J]. Applied Ocean Research, 2017, 64: 31–57. doi: 10.1016/j.apor.2017.01.018 [2] 邬伟, 熊鹰. 一种抗空化翼型修形设计方法[J]. 上海交通大学学报, 2013, 47(6): 878–883,888.WU W, XIONG Y. A reshaping method for anti-cavitating hydrofoil design[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 878–883,888 (in Chinese). [3] KOYAMA K. Relation between the lifting surface theory and the lifting line theory in the design of an optimum screw propeller[J]. Journal of Marine Science and Technology, 2013, 18: 145–165. doi: 10.1007/s00773-012-0200-3 [4] 黄斌, 熊鹰, 王波. 基于粒子群算法的螺旋桨侧斜分布优化[J]. 中国舰船研究, 2016, 11(6): 83–89. doi: 10.3969/j.issn.1673-3185.2016.06.013HUANG B, XIONG Y, WANG B. Application of particle swarm optimization theory in skew distribution of propeller[J]. Chinese Journal of Ship Research, 2016, 11(6): 83–89 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.013 [5] 王超, 韩康, 汪春辉, 等. 冰区航行船舶推进器特殊性分析[J]. 中国舰船研究, 2019, 14(2): 1–7.WANG C, HAN K, WANG C H, et al. Analysis on the particularity of propulsor of ice-going ships[J]. Chinese Journal of Ship Research, 2019, 14(2): 1–7 (in Chinese). [6] LEE K J, HOSHINO T, LEE J H. A lifting surface optimization method for the design of marine propeller blades[J]. Ocean Engineering, 2014, 88: 472–479. [7] WANG C, YE L Y, CHANG X, et al. The study on optimization design of propeller pitch[J]. Journal of Coastal Research, 2015, 73(Supp1): 466–470. [8] 宋召运, 刘波, 程昊, 等. 基于改进粒子群算法的串列叶型优化设计[J]. 推进技术, 2016, 37(8): 1469–1476.SONG Z Y, LIU B, CHENG H, et al. Optimization of tandem blade based on modified particle swarm algorithm[J]. Journal of Propulsion Technology, 2016, 37(8): 1469–1476 (in Chinese). [9] SIKARWAR N, MORRIS P J. The use of an adjoint method for optimization of blowing in a convergent-divergent nozzle[J]. International Journal of Aeroacoustics, 2015, 14(1/2): 327–351. doi: 10.1260/1475-472X.14.1-2.327 [10] BIAVA M, WOODGATE M, BARAKOS G N. Fully implicit discrete-adjoint methods for rotorcraft applications[J]. AIAA Journal, 2016, 54(2): 735–749. doi: 10.2514/1.J054006 [11] 季路成, 李伟伟, 伊卫林. 伴随方法用于叶轮机优化设计的回顾与展望[J]. 航空发动机, 2011, 37(5): 53–57,62. doi: 10.3969/j.issn.1672-3147.2011.05.015JI L C, LI W W, YI W L. Retrospect and prospect for adjoint method applying to turbomachinery optimization design[J]. Aeroengine, 2011, 37(5): 53–57,62 (in Chinese). doi: 10.3969/j.issn.1672-3147.2011.05.015 [12] PIRONNEAU O. On optimum design in fluid mechanics[J]. Journal of Fluid Mechanics, 1974, 64(1): 97–110. doi: 10.1017/S0022112074002023 [13] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233–260. doi: 10.1007/BF01061285 [14] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2): 412–423. doi: 10.2514/1.C031975 [15] 李伟伟, 季路成, 伊卫林. 基于伴随方法的多级叶轮机三维叶片优化设计[J]. 工程热物理学报, 2014, 35(11): 2164–2167.LI W W, JI L C, YI W L. Blade shape optimization of multistage turbomachinery by adjoint method[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2164–2167 (in Chinese). [16] 王睿, 熊鹰, 王展智. 适用于整体求解吊舱推进器的定常面元法[J]. 推进技术, 2016, 37(5): 992–1000.WANG R, XIONG Y, WANG Z Z. A steady surface panel method suitable for calculation of podded propulsor as a whole[J]. Journal of Propulsion Technology, 2016, 37(5): 992–1000 (in Chinese). [17] WANG R, XIONG Y, WANG Z Z. A surface panel method for the analysis of hybrid contra-rotating shaft pod propulsor[J]. Ocean Engineering, 2017, 140: 97–104. doi: 10.1016/j.oceaneng.2017.05.022 [18] 王波. 船用螺旋桨参数化分析及优化设计研究[D]. 武汉: 海军工程大学, 2013.WANG B. Research on optimization design and parameters analysis of marine propeller[D]. Wuhan: Naval University of Engineering, 2013 (in Chinese). -