留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶智能能效优化关键技术研究现状与展望

王凯 胡唯唯 黄连忠 蔡玉良 马冉祺

王凯, 胡唯唯, 黄连忠, 等. 船舶智能能效优化关键技术研究现状与展望[J]. 中国舰船研究, 2021, 16(1): 180–192 doi: 10.19693/j.issn.1673-3185.01942
引用本文: 王凯, 胡唯唯, 黄连忠, 等. 船舶智能能效优化关键技术研究现状与展望[J]. 中国舰船研究, 2021, 16(1): 180–192 doi: 10.19693/j.issn.1673-3185.01942
WANG K, HU W W, HUANG L Z, et al. Research progress and prospects of ship intelligent energy efficiency optimization key technologies[J]. Chinese Journal of Ship Research, 2021, 16(1): 180–192 doi: 10.19693/j.issn.1673-3185.01942
Citation: WANG K, HU W W, HUANG L Z, et al. Research progress and prospects of ship intelligent energy efficiency optimization key technologies[J]. Chinese Journal of Ship Research, 2021, 16(1): 180–192 doi: 10.19693/j.issn.1673-3185.01942

船舶智能能效优化关键技术研究现状与展望

doi: 10.19693/j.issn.1673-3185.01942
基金项目: 国家自然科学基金青年科学基金资助项目(51909020);中国博士后科学基金资助项目(2020M670735);辽宁省博士科研启动基金指导计划项目(2019-BS-023);国家水运安全工程技术研究中心开放基金项目(A2020001);中央高校基本科研业务费专项资金资助项目(3132020185,3132019316)
详细信息
    作者简介:

    王凯,男,1990年生,博士,讲师。研究方向:船舶智能能效管理与绿色技术。E-mail:kwang@dlmu.edu.cn

    黄连忠,男,1969年生,博士,教授。研究方向:船舶智能能效管理与绿色技术。E-mail:huanglianzhong@163.com

    蔡玉良,男,1972年生,高级工程师

    通信作者:

    黄连忠

  • 中图分类号: U676.3

Research progress and prospects of ship intelligent energy efficiency optimization key technologies

知识共享许可协议
船舶智能能效优化关键技术研究现状与展望王凯,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 智能能效管理作为智能船舶发展的重要组成部分之一,可以实现船舶能效的自动监测、分析与自主决策,对提升船舶的绿色化与智能化水平具有重要意义。通过分析船舶智能能效管理规范与检验指南,围绕船舶能效智能监控与系统设计技术、船舶智能能效大数据应用技术、智能能效优化模型与智能算法等核心问题,系统分析船舶智能能效优化的国内外发展现状。结合目前的研究现状,提出船舶智能能效优化存在的不足与面临的挑战,对智能能效优化的未来发展与研究方向做出展望,以期为智能船舶能效管理提供参考。
  • 图  1  智能能效管理检验指南概览

    Figure  1.  The inspection guidelines of intelligent energy efficiency management

    图  2  船舶能效大数据流[26]

    Figure  2.  The big data flow of the ship energy efficiency[26]

    图  3  交替稀疏自编码网络模型训练过程[46]

    Figure  3.  Training process of alternating sparse self-coding network model[46]

    图  4  气象定线的动态规划方法[58]

    Figure  4.  The dynamic programming method for weather routing[58]

    图  5  定航线船舶航速智能优化方法[63]

    Figure  5.  The intelligent speed optimization for given route ship[63]

    表  1  开发的能效监控系统

    Table  1.   Developed energy efficiency monitoring system

    系统名称研发机构功能与特点
    船舶能效监控系统Marorka公司提出航线、航速、纵倾的优化方案
    ECO-Assistant软件系统德国劳氏船级社监控主、辅机油耗
    航行与船舶优化系统Jeppesen Marine计算CO2减排量,优化航线航速
    船舶能效管理模块NAPA公司可根据风、浪、流信息规划船舶航线与航速,并制定最佳装载方案
    船舶能效综合监控系统ABB公司能效监测与优化
    大型船舶燃油优化控制系统Devex Mechatronics公司优化控制螺旋桨、主机转速及航行路径
    营运船舶能效管理和计算软件系统中国船级社、大连海事大学等对能效进行管理和计算
    船舶能效与通航环境数据监测系统武汉理工大学实时采集船舶航行过程中的通航环境数据
    船舶燃油监控系统中远集装箱运输有限公司辅助管理者及时发现燃油消耗异常并做出反应
    中远集运能效管理系统上海海事大学[14]从海运企业能效管理角度出发进行系统架构和功能设计
    基于北斗导航的船舶油耗监测系统集美大学[15]实现渔船的油耗监测
    面向能效优化的船舶航速管理系统中海网络科技股份有限公司[16]结合航行状态及气象水文信息,对航速进行迭代优化
    基于辅机节能的能耗综合管理系统中国舰船研究设计中心[17]实时优化辅机运行状态
    下载: 导出CSV

    表  2  智能能效监控系统列表

    Table  2.   The intelligent energy efficiency monitoring systems

    系统名称研发机构系统特点
    智能能效管理系统 Rolls Royce公司 运用智能算法和船舶大数据技术,可进一步降低船舶油耗
    船舶能效监控系统 SeaTechnik公司 实时监测船舶性能及航行数据,在线分析关键性能指标和趋势
    船舶能效在线智能管理系统 中国船级社、大连海事大学 提供面向船舶航行能效的综合智能优化方案
    船舶能效智能管理系统 沪东中华有限公司 可针对耗能设备计算单位距离的燃油消耗量、碳排放量,并提供相关的辅助决策
    船舶智能能效管理系统 江苏杰瑞深软科技有限公司 分为低级功能和高级功能,强化了系统的软、硬件及功能模块,具有较好的性能
    下载: 导出CSV

    表  3  智能优化算法及其应用

    Table  3.   The intelligent optimization algorithms and their application

    算法名称智能能效优化应用算法名称智能能效优化应用
    遗传算法 船舶能效优化[43] 人工神经网络 船舶能效预测[36-37, 39]
    提高能效预测准确性[45] 船队能耗预测[42]
    航速优化[63] 船舶能效优化[43]
    航线优化[48, 53] 船舶能耗评估[38]
    船型优化[66] 船舶航行稳性优化[69]
    粒子群优化算法 航速优化[62] 随机森林算法 舰队能耗预测[42]
    提高能耗模型准确性[67]
    多目标粒子群优化算法 航线优化[49] 支持向量机 船舶能效评估[40]
    船体阻力优化[68]
    蚁群算法 航行路径优化[50]
    船舶航线优化[54]
    动态规划算法 航行路径优化[51-52, 58]
    船舶能耗优化[55]
    船舶多目标优化[56-57]
    模拟退火算法 航速分段优化[47] 蒙特卡罗仿真 能耗预测不稳定性分析[44]
    航速与主机转速决策[59]
    聚类分析算法 航段划分[47] 关联规则算法 环境对船舶航行的影响[46]
    船舶航线优化[54]
    下载: 导出CSV
  • [1] WANG K, YAN X P, YUAN Y P, et al. Real-time optimization of ship energy efficiency based on the prediction technology of working condition[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 81–93. doi: 10.1016/j.trd.2016.03.014
    [2] 胡琼, 陈凯, 孙权. 新船能效设计指数及应对策略分析[J]. 中国造船, 2011, 52(增刊 1): 27–32.

    HU Q, CHEN K, SUN Q. Energy efficiency design index (EEDI) for new ships and coping strategies analysis[J]. Shipbuilding of China, 2011, 52(Supp 1): 27–32 (in Chinese).
    [3] WANG K, LI J Y, YAN X P, et al. A novel bi-level distributed dynamic optimization method of ship fleets energy consumption[J]. Ocean Engineering, 2020, 197: 106802. doi: 10.1016/j.oceaneng.2019.106802
    [4] 王凯, 严新平, 袁裕鹏. 基于改进粒子群算法的船舶发电机选型优化研究[J]. 中国造船, 2016, 57(1): 201–209. doi: 10.3969/j.issn.1000-4882.2016.01.022

    WANG K, YAN X P, YUAN Y P. Optimal selection of marine generator based on improved particle swarm algorithm[J]. Shipbuilding of China, 2016, 57(1): 201–209 (in Chinese). doi: 10.3969/j.issn.1000-4882.2016.01.022
    [5] 中国船级社. 智能船舶规范[S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn.

    Chinese Classification Society. Smart ship specifications[S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn (in Chinese).
    [6] 刘伊凡, 黄连忠, 孙培廷, 等. 实船数据环境下船舶主柴油机性能评估方法[J]. 内燃机学报, 2018, 36(2): 182–191.

    LIU Y F, HUANG L Z, SUN P T, et al. A performance estimation method for main diesel engine in shipping data environment[J]. Transactions of CSICE, 2018, 36(2): 182–191 (in Chinese).
    [7] 中国船级社. 船舶智能能效管理检验指南[S/OL]. (2018-09-01)[2020-03-12]. http://www.ccs.org.cn.

    Chinese Classification Society. Ship intelligent energy efficiency management inspection guidelines [S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn (in Chinese).
    [8] WANG K, YAN X P, YUAN Y P, et al. Design of ship energy efficiency monitoring and control system considering environmental factors[C]//Proceedings of 2015 International Conference on Transportation Information and Safety (ICTIS). Wuhan, China: IEEE, 2015.
    [9] HANSEN H, FREUND M. Assistance tools for operational fuel efficiency[C]//Proceedings of the 9th International Conference on Computer and IT Applications in the Maritime Industries. Gubio, Italy: [s. n. ], 2010.
    [10] ABB赢得STX芬兰船舶自动化系统订单[J]. 自动化应用, 2012(10): 8.

    ABB wins order for STX Finland ship automation system[J]. Automation Application, 2012(10): 8 (in Chinese).
    [11] FAN A L, YAN X P, YIN Q Z. A multisource information system for monitoring and improving ship energy efficiency[J]. Journal of Coastal Research, 2016, 32(5): 1235–1245.
    [12] WANG K, YAN X P, YUAN Y P, et al. Dynamic optimization of ship energy efficiency considering time-varying environmental factors[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 685–698. doi: 10.1016/j.trd.2018.04.005
    [13] 蔡德清, 张燃, 郑士君, 等. 中远集运船舶燃油监控系统[J]. 航海技术, 2008(5): 57–59.

    CAI D Q, ZHANG R, ZHENG S J, et al. COSCO ship's fuel monitoring system[J]. Marine Technology, 2008(5): 57–59 (in Chinese).
    [14] 郑士君, 黄爱平, 岳跃申, 等. 海运企业能效管理信息系统研发[J]. 中国航海, 2010, 33(4): 53–56. doi: 10.3969/j.issn.1000-4653.2010.04.013

    ZHENG S J, HUANG A P, YUE Y S, et al. Research and development on energy efficiency management information system for shipping companies[J]. Navigation of China, 2010, 33(4): 53–56 (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.04.013
    [15] 熊林. 基于北斗卫星通讯的船舶油耗管理系统设计[D]. 厦门: 集美大学, 2015.

    XIONG L. Design of marine fuel management system based on BeiDou satellite communication[D]. Xiamen: Jimei University, 2015 (in Chinese).
    [16] 苏一, 张倩墨. 基于能效管理的船舶航速系统优化设计[J]. 上海船舶运输科学研究所学报, 2014, 37(2): 43–49. doi: 10.3969/j.issn.1674-5949.2014.02.009

    SU Y, ZHANG Q M. Design of energy efficiency oriented sailing speed optimization system[J]. Journal of Shanghai Ship and Shipping Research Institute, 2014, 37(2): 43–49 (in Chinese). doi: 10.3969/j.issn.1674-5949.2014.02.009
    [17] 阳世荣. 船舶辅机节能控制与管理技术研究[J]. 中国造船, 2012, 53(增刊 1): 226–232.

    YANG S R. Research on energy saving control and management technology of marine auxiliary machine[J]. Shipbuilding of China, 2012, 53(Supp 1): 226–232 (in Chinese).
    [18] WANG K, YAN X P, YUAN Y P. Fuzzy logic method for ship energy efficiency decision-making model to determine optimal engine speed[J]. Sea Technology, 2015, 56(11): 45–46.
    [19] 吴军, 万晓跃, 孙永刚, 等. 在船舶“智能能效”设计时应关注的几个要点[J]. 船舶, 2018, 29(增刊 1): 42–51.

    WU J, WAN X Y, SUN Y G, et al. Several points to be concerned in the design of ship's "intelligent energy efficiency"[J]. Ship & Boat, 2018, 29(Supp 1): 42–51 (in Chinese).
    [20] 郑洪燕, 王跃, 朱军. 船舶智能能效管理系统设计[J]. 水运管理, 2018, 40(11): 25–28. doi: 10.3969/j.issn.1000-8799.2018.11.008

    ZHENG H Y, WANG Y, ZHU J. Design of ship intelligent energy efficiency management system[J]. Shipping Management, 2018, 40(11): 25–28 (in Chinese). doi: 10.3969/j.issn.1000-8799.2018.11.008
    [21] KAMBATLA K, KOLLIAS G, KUMAR V, et al. Trends in big data analytics[J]. Journal of Parallel and Distributed Computing, 2014, 74(7): 2561–2573. doi: 10.1016/j.jpdc.2014.01.003
    [22] XIE H L, HE Y F, XIE X. Exploring the factors influencing ecological land change for China's Beijing-Tianjin-Hebei Region using big data[J]. Journal of Cleaner Production, 2017, 142: 677–687. doi: 10.1016/j.jclepro.2016.03.064
    [23] 韩丽莎. 浅谈大数据与数据挖掘技术[J]. 计算机产品与流通, 2018(8): 112–131.

    HAN L S. Talking about big data and data mining technology[J]. Computer Products and Circulation, 2018(8): 112–131 (in Chinese).
    [24] 万辉, 张建雄, 高嵩, 等. 内河船舶大数据关键技术研究[J]. 中国水运, 2017, 38(11): 47–50.

    WAN H, ZHANG J X, GAO S, et al. Research on key technologies of inland ship big data[J]. China Water Transport, 2017, 38(11): 47–50 (in Chinese).
    [25] Klaveness Digital Company. A big data platform[EB/OL]. (2018-08-24) [2020-03-12]. http://www.Klavenessdigital.com.
    [26] PERERA L P, MO B. Machine intelligence for energy efficient ships: a big data solution[C]//Proceedings of the 3rd International Conference on Maritime Technology and Engineering (MARTECH 2016). Lisbon, Portugal: [s. n. ], 2016.
    [27] BOCCHETTI D, LEPORE A, PALUMBO B, et al. A statistical approach to ship fuel consumption monitoring[J]. Journal of Ship Research, 2015, 59(3): 162–171. doi: 10.5957/JOSR.59.3.150012
    [28] 林俊, 葛海龙, 李晓陆, 等. 江海直达绿色船舶能效大数据监控平台[J]. 船舶, 2018, 29(增刊 1): 111–126.

    LIN J, GE H L, LI X L, et al. Jianghai direct green ship energy efficiency big data monitoring platform[J]. Ship & Boat, 2018, 29(Supp 1): 111–126 (in Chinese).
    [29] 谢云鹏, 董良雄, 施怡然, 等. 基于大数据技术的船舶油耗监测系统设计[J]. 水运管理, 2018, 40(9): 34–36. doi: 10.3969/j.issn.1000-8799.2018.09.010

    XIE Y P, DONG L X, SHI Y R, et al. Design of ship fuel consumption monitoring system based on big data technology[J]. Shipping Management, 2018, 40(9): 34–36 (in Chinese). doi: 10.3969/j.issn.1000-8799.2018.09.010
    [30] 孙峰, 黄连忠, 刘伊凡, 等. 一种应用数据挖掘技术评估柴油机性能的方法[J]. 大连海事大学学报, 2017, 43(3): 83–88.

    SUN F, HUANG L Z, LIU Y F, et al. A method of evaluating diesel engine performance by using data mining technology[J]. Journal of Dalian Maritime University, 2017, 43(3): 83–88 (in Chinese).
    [31] ADLAND R O, JIA H. Vessel speed analytics using satellite-based ship position data[C]//Proceedings of 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Bali, Indonesia: IEEE, 2016: 1299–1303.
    [32] CORADDU A, FIGARI M, SAVIO S. Numerical investigation on ship energy efficiency by Monte Carlo simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2014, 228(3): 220–234. doi: 10.1177/1475090214524184
    [33] LEE H, AYDIN N, CHOI Y, et al. A decision support system for vessel speed decision in maritime logistics using weather archive big data[J]. Computers & Operations Research, 2018, 98: 330–342.
    [34] 韩佳彤. 基于大数据分析的海上智能航线设计[J]. 珠江水运, 2016(1): 78–79. doi: 10.3969/j.issn.1672-8912.2016.01.037

    HAN J T. Design of intelligent routes at sea based on big data analysis[J]. Pearl River Water Transport, 2016(1): 78–79 (in Chinese). doi: 10.3969/j.issn.1672-8912.2016.01.037
    [35] YAN X P, WANG K, YUAN Y P, et al. Energy-efficient shipping: an application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors[J]. Ocean Engineering, 2018, 169: 457–468. doi: 10.1016/j.oceaneng.2018.08.050
    [36] 陈伟南, 黄连忠, 张勇, 等. 基于BP神经网络的船舶主机能效状态评估[J]. 中国舰船研究, 2018, 13(4): 127–133, 160.

    CHEN W N, HUANG L Z, ZHANG Y, et al. Evaluation of main engine energy efficiency based on BP neural network[J]. Chinese Journal of Ship Research, 2018, 13(4): 127–133, 160 (in Chinese).
    [37] YAN X P, SUN X, YIN Q Z. Multiparameter sensitivity analysis of operational energy efficiency for inland river ships based on backpropagation neural network method[J]. Marine Technology Society Journal, 2015, 49(1): 148–153. doi: 10.4031/MTSJ.49.1.5
    [38] YUAN J, WEI S M. Comparison of using artificial neural network and Gaussian process in ship energy consumption evaluation[C]//Proceedings of 2018 Joint International Conference on Energy, Ecology and Environment (ICEEE 2018) and International Conference on Electric and Intelligent Vehicles (ICEIV 2018). Melbourne, Australia: [s. n. ], 2018.
    [39] BAL BEŞIKÇI E B, ARSLAN O, TURAN O, et al. An artificial neural network based decision support system for energy efficient ship operations[J]. Computers & Operations Research, 2016, 66: 393–401.
    [40] PAGOROPOULOS A, MØLLER A H, MCALOONE T C. Applying multi-class support vector machines for performance assessment of shipping operations: the case of tanker vessels[J]. Ocean Engineering, 2017, 140: 1–6. doi: 10.1016/j.oceaneng.2017.05.001
    [41] LU R H, TURAN Q, BOULOUGOURIS E. Voyage optimisation: prediction of ship specific fuel consumption for energy efficient shipping[C]//Proceedings of the 3rd International Conference onTechnologies, Operations, Logistics and Modelling for Low Carbon Shipping. London: [s. n. ], 2013.
    [42] WICKRAMANAYAKE S, DILUM BANDARA H M N. Fuel consumption prediction of fleet vehicles using machine learning: a comparative study[C]//Proceedings of 2016 Moratuwa Engineering Research Conference. Sri Lanka: IEEE, 2016.
    [43] ALONSO J M, ALVARRUIZ F, DESANTES J M, et al. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 46–55. doi: 10.1109/TEVC.2006.876364
    [44] TILLIG F, RINGSBERG J W, MAO W G, et al. Analysis of uncertainties in the prediction of ships' fuel consumption-from early design to operation conditions[J]. Ships and Offshore Structures, 2018, 13(1): 13–24.
    [45] YANG L Q, CHEN G, RYTTER N G M, et al. A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping[J/OL]. An-nals of Operations Research, 2019. https://link.springer.com/article/10.1007/s10479-019-03183-5#citeas
    [46] 王胜正, 申心泉, 赵建森, 等. 基于ASAE深度学习预测海洋气象对船舶航速的影响[J]. 交通运输工程学报, 2018, 18(2): 139–147. doi: 10.3969/j.issn.1671-1637.2018.02.015

    WANG S Z, SHEN X Q, ZHAO J S, et al. Prediction of marine meteorological effect on ship speed based on ASAE deep learning[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 139–147 (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.02.015
    [47] 王寰宇. 远洋船舶分段航速优化及其智能算法研究[D]. 大连: 大连海事大学, 2018.

    WANG H Y. Ocean ship segmentation speed optimization and intelligent algorithms[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).
    [48] MARIE S, COURTEILLE E. Sail-assisted motor vessels weather routing using a fuzzy logic model[J]. Journal of Marine Science and Technology, 2013, 19(3): 265–279.
    [49] WANG K, LI J Y, HUANG L Z, et al. A novel joint optimization method of sailing route and speed considering environmental conditions towards energy efficient shipping[J]. Ocean Engineering, 2020, 216: 107591. doi: 10.1016/j.oceaneng.2020.107591
    [50] LAZAROWSKA A. Ant colony optimization based navigational decision support system[J]. Procedia Computer Science, 2014, 35: 1013–1022. doi: 10.1016/j.procs.2014.08.187
    [51] MENG Q, WANG T S. A scenario-based dynamic programming model for multi-period liner ship fleet planning[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(4): 401–413. doi: 10.1016/j.tre.2010.12.005
    [52] SEN D, PADHY C P. An approach for development of a ship routing algorithm for application in the North Indian Ocean region[J]. Applied Ocean Research, 2015, 50: 173–191. doi: 10.1016/j.apor.2015.01.019
    [53] 刘浩, 刘维亭, 吴将. 一种新型的船舶航线规划设计[J]. 电子测试, 2014(1): 49–50.

    LIU H, LIU W T, WU J. A new design of ship routes planning[J]. Electronic Test, 2014(1): 49–50 (in Chinese).
    [54] ZHANG S K, SHI G Y, LIU Z J, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240–250. doi: 10.1016/j.oceaneng.2018.02.060
    [55] ZACCONE R, OTTAVIANI E, FIGARI M, et al. Ship voyage optimization for safe and energy-efficient navigation: a dynamic programming approach[J]. Ocean Engineering, 2018, 153: 215–224. doi: 10.1016/j.oceaneng.2018.01.100
    [56] WANG H L, MAO W G, ERIKSSON L. A three-dimensional Dijkstra's algorithm for multi-objective ship voyage optimization[J]. Ocean Engineering, 2019, 186: 106131. doi: 10.1016/j.oceaneng.2019.106131
    [57] MA D F, MA W H, JIN S, et al. Method for simultaneously optimizing ship route and speed with emission control areas[J]. Ocean Engineering, 2020, 202: 107170. doi: 10.1016/j.oceaneng.2020.107170
    [58] SHAO W, ZHOU P L, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239–251. doi: 10.1007/s00773-011-0152-z
    [59] 黄连忠, 万晓跃, 孙永刚, 等. 基于模拟退火算法的船舶航速优化研究[J]. 船舶, 2018, 29(增刊 1): 8–17.

    HUANG L Z, WAN X Y, SUN Y G, et al. Research on ship speed optimization based on simulated annealing algorithm[J]. Ship & Boat, 2018, 29(Supp 1): 8–17 (in Chinese).
    [60] SONG Y J, YUE Y X. Optimization model of fleet deployment plan of liners[J]. Procedia Engineering, 2016, 137: 391–398. doi: 10.1016/j.proeng.2016.01.273
    [61] QI X T, SONG D P. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(4): 863–880. doi: 10.1016/j.tre.2012.02.001
    [62] WANG K, YAN X P, YUAN Y P, et al. Optimizing ship energy efficiency: application of particle swarm optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 232(4): 379–391. doi: 10.1177/1475090216638879
    [63] 马冉祺, 黄连忠, 魏茂苏, 等. 基于实船监测数据的定航线船舶智能航速优化[J]. 大连海事大学学报, 2018, 44(1): 31–35.

    MA R Q, HUANG L Z, WEI M S, et al. Intelligent speed optimization of fixed route ship based on real ship monitoring data[J]. Journal of Dalian Maritime University, 2018, 44(1): 31–35 (in Chinese).
    [64] 刘伊凡, 张剑, 张跃文. 纵倾优化下的船舶能效数值模型[J]. 船舶工程, 2015, 37(12): 31–34, 91.

    LIU Y F, ZHANG J, ZHANG Y W. Numerical model of ship energy efficiency with trim optimization[J]. Ship Engineering, 2015, 37(12): 31–34, 91 (in Chinese).
    [65] 王绪明, 刘维勤, 吴昊, 等. 船舶智能纵倾控制系统[J]. 中国航海, 2018, 41(3): 59–62, 75. doi: 10.3969/j.issn.1000-4653.2018.03.012

    WANG X M, LIU W Q, WU H, et al. Intelligent control system of ship trim[J]. Navigation of China, 2018, 41(3): 59–62, 75 (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.012
    [66] 段菲, 张利军, 陈鸽, 等. 基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计[J]. 中国舰船研究, 2017, 12(6): 66–72. doi: 10.3969/j.issn.1673-3185.2017.06.010

    DUAN F, ZHANG L J, CHEN G, et al. Polar vessel hullform design based on the multi-objective optimization NSGA II[J]. Chinese Journal of Ship Research, 2017, 12(6): 66–72 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.06.010
    [67] 路通. 基于主机油耗模型的船体阻力变化研究[D]. 大连: 大连海事大学, 2018.

    LU T. Study on the change of hull resistance based on oil consumption model of ship's main engine[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).
    [68] 缪爱琴, 万德成. 基于MOPSO算法的船舶兴波阻力多目标优化[J]. 水动力学研究与进展(A辑), 2019, 34(3): 291–298.

    MIAO A Q, WAN D C. Multi-objective optimization of ship wave-making resistance based on MOPSO[J]. Chinese Journal of Hydrodynamics (Ser. A), 2019, 34(3): 291–298 (in Chinese).
    [69] WANG Y Y, CHAI S H, KHAN F, et al. Unscented Kalman filter trained neural networks based rudder roll stabilization system for ship in waves[J]. Applied Ocean Research, 2017, 68: 26–38. doi: 10.1016/j.apor.2017.08.007
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  831
  • HTML全文浏览量:  260
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 修回日期:  2020-07-29
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回