Coordinated control of multiple unmanned surface vehicles: recent advances and future trends
-
摘要: 当前,海洋航行器呈现智能化、网络化、集群化等重要发展趋势,多无人艇通过协同实现集群化作业,是未来海洋作业的主要形式之一。从无人艇运动数学模型出发,分析了多无人艇集群控制所面临的问题和挑战,根据多无人艇运动不同的场景,从轨迹导引、路径导引、目标导引3个方面综述了多无人艇集群协同控制的研究进展。最后,对多无人艇协同控制的研究方向和未来趋势进行了总结和展望。Abstract: The future trends of marine operations will be intelligent, networked and swarmed marine vehicles. One of the main trends of future marine operations will be joint operations through the coordination of multiple unmanned surface vehicles (USVs). As an introduction to the mathematical model of USVs, this paper presents the key problems and fundamental challenges of motion controlling multiple USVs. Regarding different mission scenarios of USVs, the existing results will be classified into trajectory-guided, path-guided, and target-guided coordinated control. In conclusion, we discussed and summarized the future trends of the coordinated control of multiple USVs.
-
表 1 轨迹导引、路径导引和目标导引的集群协同控制结构与优缺点
Table 1. Coordinated control architectures, their advantages and disadvantages of TRCC, PACC and TACC
表 2 轨迹导引、路径导引和目标导引的集群协同控制器设计方法
Table 2. Design methods of coordinated controller for TRCC, PACC, TACC
表 3 轨迹导引、路径导引和目标导引的控制方法
Table 3. Control methods of TRCC, PACC, TACC
-
[1] PENG Z H, WANG J, WANG D, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 732–745. doi: 10.1109/TⅡ.2020.3004343 [2] LIU Z X, ZHANG Y M, YU X, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews In Control, 2016, 41: 71–93. doi: 10.1016/j.arcontrol.2016.04.018 [3] 徐玉如, 苏玉民, 庞永杰. 海洋空间智能无人运载器技术发展展望[J]. 中国舰船研究, 2006, 1(3): 1–4. doi: 10.3969/j.issn.1673-3185.2006.03.001XU Y R, SU Y M, PANG Y J. Expectation of the development in the technology on ocean space intelligent unmanned vehicles[J]. Chinese Journal of Ship Research, 2006, 1(3): 1–4 (in Chinese). doi: 10.3969/j.issn.1673-3185.2006.03.001 [4] ROBERTS G N. Trends in marine control systems[J]. Annual Reviews in Control, 2008, 32(2): 263–269. doi: 10.1016/j.arcontrol.2008.08.002 [5] 金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1–8.JIN K F, WANG H D, YI H, et al. Key technologies and intelligence evolution of maritime UV[J]. Chinese Journal of Ship Research, 2018, 13(6): 1–8 (in Chinese). [6] YAN R J, PANG S, SUN H B, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application, 2010, 9(4): 451–457. doi: 10.1007/s11804-010-1033-2 [7] 廖煜雷, 张铭钧, 董早鹏, 等. 无人艇运动控制方法的回顾与展望[J]. 中国造船, 2014, 55(4): 206–216. doi: 10.3969/j.issn.1000-4882.2014.04.025LIAO Y L, ZHANG M J, DONG Z P, et al. Methods of motion control for unmanned surface vehicle: state of the art and perspective[J]. Shipbuilding of China, 2014, 55(4): 206–216 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.04.025 [8] 赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65.ZHAO R, XU J, XIANG X B, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65 (in Chinese). [9] JIANG Y, PENG Z H, WANG D, et al. Line-of-sight target enclosing of an underactuated autonomous surface vehicle with experiment results[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 832–841. doi: 10.1109/TⅡ.2019.2923664 [10] LIU L, WANG D, PENG Z H, et al. Cooperative path following ring-networked under-actuated autonomous surface vehicles: algorithms and experimental results[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1519–1529. doi: 10.1109/TCYB.2018.2883335 [11] GU N, PENG Z H, WANG D, et al. Antidisturbance coordinated path following control of robotic autonomous surface vehicles: theory and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2386–2396. doi: 10.1109/TMECH.2019.2929216 [12] LIU L, WANG D, PENG Z H, et al. Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with sideslip compensation[J]. Ocean Engineering, 2016, 124: 340–348. doi: 10.1016/j.oceaneng.2016.07.057 [13] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley & Sons, 2011. [14] BREIVIK M, HOVSTEIN V E, FOSSEN T I. Straight-line target tracking for unmanned surface vehicles[J]. Modeling, Identification and Control, 2008, 29(4): 131–149. doi: 10.4173/mic.2008.4.2 [15] SONNENBURG C R, WOOLSEY C A. Modeling, identification, and control of an unmanned surface vehicle[J]. Journal of Field Robotics, 2013, 30(3): 371–398. doi: 10.1002/rob.21452 [16] TEE K P, GE S S. Control of fully actuated ocean surface vessels using a class of feedforward approximators[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 750–756. doi: 10.1109/TCST.2006.872507 [17] PENG Z H, WANG J, WANG D. Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1083–1090. doi: 10.1109/TCST.2017.2699167 [18] DAI S L, WANG C, LUO F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 801–810. doi: 10.1109/TⅡ.2012.2205584 [19] 曹诗杰, 陈于涛, 曾凡明. 基于改进强化学习的无人艇集群一致性控制[J]. 华中科技大学学报(自然科学版), 2019, 47(9): 42–47.CAO S J, CHEN Y T, ZENG F M. Consensus control of unmanned surface vehicle group based on advanced reinforcement learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(9): 42–47 (in Chinese). [20] FAHIMI F. Sliding-mode formation control for underactuated surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3): 617–622. doi: 10.1109/TRO.2007.898961 [21] LI T S, ZHAO R, CHEN C L P, et al. Finite-time formation control of under-actuated ships using nonlinear sliding mode control[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3243–3253. doi: 10.1109/TCYB.2018.2794968 [22] ALMEIDA J, SILVESTRE C, PASCOAL A. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty[J]. International Journal of Robust and Nonlinear Control, 2010, 20(14): 1549–1565. doi: 10.1002/rnc.1526 [23] DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713–1722. doi: 10.1016/j.automatica.2006.04.026 [24] 胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7. doi: 10.19693/j.issn.1673-3185.01521HU J Z, TANG G Y, WANG J J, et al. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01521 [25] DO K D. Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267–278. doi: 10.1016/j.oceaneng.2015.10.038 [26] CUI R X, ZHANG X, CUI D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities[J]. Ocean Engineering, 2016, 123: 45–54. doi: 10.1016/j.oceaneng.2016.06.041 [27] CUI R X, GE S S, VOON EE HOW B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17/18): 1491–1502. doi: 10.1016/j.oceaneng.2010.07.006 [28] PENG Z H, WANG J, WANG D. Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3831–3839. doi: 10.1109/TIE.2017.2652346 [29] PENG Z, WANG D, HU X. Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics[J]. IET Control Theory & Applications, 2011, 5(12): 1378–1387. doi: 10.1049/iet-cta.2010.0429 [30] CHEN L P, CUI R X, YANG C G, et al. Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4024–4035. doi: 10.1109/TIE.2019.2914631 [31] XIANG X B, YU C Y, ZHANG Q. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties[J]. Computers & Operations Research, 2017, 84: 165–177. doi: 10.1016/j.cor.2016.09.017 [32] CHEN X T, TAN W W. Tracking control of surface vessels via fault-tolerant adaptive backstepping interval type-2 fuzzy control[J]. Ocean Engineering, 2013, 70: 97–109. doi: 10.1016/j.oceaneng.2013.05.021 [33] 曹诗杰, 曾凡明, 陈于涛. 无人水面艇航向航速协同控制方法[J]. 中国舰船研究, 2015, 10(6): 74–80. doi: 10.3969/j.issn.1673-3185.2015.06.011CAO S J, ZENG F M, CHEN Y T. The course and speed cooperative control method for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2015, 10(6): 74–80 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.06.011 [34] DO K D. Synchronization motion tracking control of multiple underactuated ships with collision avoidance[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2976–2989. doi: 10.1109/TIE.2016.2523453 [35] DO K D. Formation control of underactuated ships with elliptical shape approximation and limited communication ranges[J]. Automatica, 2012, 48(7): 1380–1388. doi: 10.1016/j.automatica.2011.11.013 [36] LIU L, WANG D, PENG Z H. ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J]. IEEE Journal of Oceanic Engineering, 2017, 42(2): 477–487. doi: 10.1109/JOE.2016.2569218 [37] PENG Z H, WANG J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(4): 535–544. doi: 10.1109/TSMC.2017.2697447 [38] FU M Y, YU L L. Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances[J]. Ocean Engineering, 2018, 159: 219–227. doi: 10.1016/j.oceaneng.2018.04.016 [39] 吴文涛, 古楠, 彭周华, 等. 多领航者导引无人船集群的分布式时变队形控制[J]. 中国舰船研究, 2020, 15(1): 21–30.WU W T, GU N, PENG Z H, et al. Distributed time-varying formation control for unmanned surface vehicles guided by multiple leaders[J]. Chinese Journal of Ship Research, 2020, 15(1): 21–30 (in Chinese). [40] CHEN M, GE S S, VOON EE HOW B, et al. Robust adaptive position mooring control for marine vessels[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 395–409. doi: 10.1109/TCST.2012.2183676 [41] PENG Z H, WANG D, CHEN Z Y, et al. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 513–520. doi: 10.1109/TCST.2011.2181513 [42] PENG Z H, WANG D, LI T S. Predictor-based neural dynamic surface control for distributed formation tracking of multiple marine surface vehicles with improved transient performance[J]. Science China Information Sciences, 2016, 59(9): 92210. doi: 10.1007/s11432-015-5384-9 [43] PENG Z H, WANG D, LI T S, et al. Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics[J]. Nonlinear Dynamics, 2013, 74(1/2): 95–106. doi: 10.1007/s11071-013-0951-3 [44] PENG Z H, WANG D, WANG J. Cooperative dynamic positioning of multiple marine offshore vessels: a modular design[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1210–1221. doi: 10.1109/TMECH.2015.2508647 [45] PENG Z H, WANG J, WANG D. Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 1026–1036. doi: 10.1109/TMECH.2016.2632304 [46] PENG Z H, WANG D, LI T S, et al. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2527–2535. doi: 10.1109/TCYB.2019.2914717 [47] GU N, WANG D, PENG Z H, et al. Adaptive bounded neural network control for coordinated path-following of networked underactuated autonomous surface vehicles under time-varying state-dependent cyber-attack[J]. ISA Transactions, 2019, 104: 212–221. doi: 10.1016/j.isatra.2018.12.051 [48] GU N, WANG D, PENG Z H, et al. Distributed containment maneuvering of uncertain under-actuated unmanned surface vehicles guided by multiple virtual leaders with a formation[J]. Ocean Engineering, 2019, 187: 105996. doi: 10.1016/j.oceaneng.2019.04.077 [49] PENG Z H, WANG J S, WANG J. Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3627–3635. doi: 10.1109/TIE.2018.2856180 [50] PENG Z H, WANG J, HAN Q L. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8724–8732. doi: 10.1109/TIE.2018.2885726 [51] DO K D. Practical formation control of multiple underactuated ships with limited sensing ranges[J]. Robotics and Autonomous Systems, 2011, 59(6): 457–471. doi: 10.1016/j.robot.2011.03.003 [52] ABREU P C, PASCOAL A M. Formation control in the scope of the MORPH project. Part I: theoretical foundations[J]. IFAC-PapersOnLine, 2015, 48(2): 244–249. doi: 10.1016/j.ifacol.2015.06.040 [53] ABREU P C, BAYAT M, PASCOAL A M, et al. Formation control in the scope of the MORPH project, part Ⅱ: implementation and results[J]. IFAC-PapersOnLine, 2015, 48(2): 250–255. doi: 10.1016/j.ifacol.2015.06.041 [54] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8): 1362–1379. doi: 10.1109/TAC.2007.902731 [55] LI J H, LEE P M, JUN B H, et al. Point-to-point navigation of underactuated ships[J]. Automatica, 2008, 44(12): 3201–3205. doi: 10.1016/j.automatica.2008.08.003 [56] LIU L, WANG D, PENG Z H, et al. Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1241–1249. doi: 10.1109/TNNLS.2018.2868978 [57] FOSSEN T I, PETTERSEN K Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws[J]. Automatica, 2014, 50(11): 2912–2917. doi: 10.1016/j.automatica.2014.10.018 [58] CAHARIJA W, PETTERSEN K Y, BIBULI M, et al. Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1623–1642. doi: 10.1109/TCST.2015.2504838 [59] CHEN M, JIANG B, CUI R X. Actuator fault-tolerant control of ocean surface vessels with input saturation[J]. International Journal of Robust and Nonlinear Control, 2016, 26(3): 542–564. doi: 10.1002/rnc.3324 [60] ZHENG Z W, SUN L. Path following control for marine surface vessel with uncertainties and input saturation[J]. Neurocomputing, 2016, 177: 158–167. doi: 10.1016/j.neucom.2015.11.017 [61] HE W, YIN Z, SUN C Y. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function[J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1641–1651. doi: 10.1109/TCYB.2016.2554621 [62] CHWA D. Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1357–1370. doi: 10.1109/tcst.2010.2090526 [63] YAN Z, WANG J. Model predictive control for tracking of underactuated vessels based on recurrent neural networks[J]. IEEE Journal of Oceanic Engineering, 2012, 37(4): 717–726. doi: 10.1109/JOE.2012.2201797 [64] WANG H, WANG D, PENG Z H. Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation[J]. Nonlinear Dynamics, 2014, 77(1/2): 107–117. doi: 10.1007/s11071-014-1277-5 [65] OH S R, SUN J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering, 2010, 37(2/3): 289–295. doi: 10.1016/j.oceaneng.2009.10.004 [66] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine, 2009, 29(6): 32–46. doi: 10.1109/MCS.2009.934408 [67] LIU L, WANG D, PENG Z H. State recovery and disturbance estimation of unmanned surface vehicles based on nonlinear extended state observers[J]. Ocean Engineering, 2019, 171: 625–632. doi: 10.1016/j.oceaneng.2018.11.008 [68] YU L L, FU M Y. A robust finite-time output feedback control scheme for marine surface vehicles formation[J]. IEEE Access, 2018, 6: 41291–41301. doi: 10.1109/ACCESS.2018.2857620 [69] ZHANG J Q, YU S H, YAN Y. Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances[J]. Ocean Engineering, 2019, 186: 106109. doi: 10.1016/j.oceaneng.2019.05.078 [70] LIU L, ZHANG W D, WANG D, et al. Event-triggered extended state observers design for dynamic positioning vessels subject to unknown sea loads[J]. Ocean Engineering, 2020, 209: 107242. doi: 10.1016/j.oceaneng.2020.107242 [71] PENG Z H, WANG D, SHI Y, et al. Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders[J]. Information Sciences, 2015, 316: 163–179. doi: 10.1016/j.ins.2015.04.025 [72] PENG Z H, WANG D, LIU H H T, et al. Distributed robust state and output feedback controller designs for rendezvous of networked autonomous surface vehicles using neural networks[J]. Neurocomputing, 2013, 115: 130–141. doi: 10.1016/j.neucom.2013.01.010 [73] ZEREIK E, BIBULI M, MIŠKOVIĆ N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46: 350–368. doi: 10.1016/j.arcontrol.2018.10.002 [74] YOO S J, PARK B S. Guaranteed performance design for distributed bounded containment control of networked uncertain underactuated surface vessels[J]. Journal of the Franklin Institute, 2017, 354(3): 1584–1602. doi: 10.1016/j.jfranklin.2016.12.008 [75] DAI S L, HE S D, LIN H, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237–4246. doi: 10.1109/TIE.2017.2758743 [76] ARRICHIELLO F, CHIAVERINI S, FOSSEN T I. Formation control of marine surface vessels using the null-space-based behavioral control[M]//PETTERSEN K Y, GRAVDAHL J T, NIJMEIJER H. Group Coordination and Cooperative Control. Berlin, Heidelberg: Springer, 2006: 1–19. [77] SKJETNE R, MOI S, FOSSEN T I. Nonlinear formation control of marine craft[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002: 1699-1704. [78] 吕光颢, 彭周华, 王丹, 等. 无人船集群队形重构的目标任务分配[J]. 中国舰船研究, 2018, 13(6): 101–106.LYU G H, PENG Z H, WANG D, et al. Target assignment in formation reconfiguration for swarms of unmanned ships[J]. Chinese Journal of Ship Research, 2018, 13(6): 101–106 (in Chinese). [79] JIN X. Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints[J]. Automatica, 2016, 68: 228–236. doi: 10.1016/j.automatica.2016.01.064 [80] PENG Z H, GU N, ZHANG Y, et al. Path-guided time-varying formation control with collision avoidance and connectivity preservation of under-actuated autonomous surface vehicles subject to unknown input gains[J]. Ocean Engineering, 2019, 191: 106501. doi: 10.1016/j.oceaneng.2019.106501 [81] PENG Z H, WANG D, ZHANG H W, et al. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(8): 1508–1519. doi: 10.1109/tnnls.2013.2293499 [82] SUN Z J, ZHANG G Q, LU Y, et al. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation[J]. ISA Transactions, 2018, 72: 15–24. doi: 10.1016/j.isatra.2017.11.008 [83] SHOJAEI K, DOLATSHAHI M. Line-of-sight target tracking control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2017, 133: 244–252. doi: 10.1016/j.oceaneng.2017.02.007 [84] SINISTERRA A J, DHANAK M R, VON ELLENRIEDER K. Stereovision-based target tracking system for USV operations[J]. Ocean Engineering, 2017, 133: 197–214. doi: 10.1016/j.oceaneng.2017.01.024 [85] IHLE I A F, ARCAK M, FOSSEN T I. Passivity-based designs for synchronized path-following[J]. Automatica, 2007, 43(9): 1508–1518. doi: 10.1016/j.automatica.2007.02.018 [86] GHOMMAM J, MNIF F. Coordinated path-following control for a group of underactuated surface vessels[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3951–3963. doi: 10.1109/TIE.2009.2028362 [87] ALMEIDA J, SILVESTRE C, PASCOAL A M. Cooperative control of multiple surface vessels with discrete-time periodic communications[J]. International Journal of Robust and Nonlinear Control, 2012, 22(4): 398–419. doi: 10.1002/rnc.1698 [88] GHABCHELOO R, AGUIAR A P, PASCOAL A, et al. Coordinated path-following in the presence of communication losses and time delays[J]. SIAM Journal on Control and Optimization, 2009, 48(1): 234–265. doi: 10.1137/060678993 [89] WANG H, WANG D, PENG Z H. Neural network based adaptive dynamic surface control for cooperative path following of marine surface vehicles via state and output feedback[J]. Neurocomputing, 2014, 133: 170–178. doi: 10.1016/j.neucom.2013.11.019 [90] LIU L, WANG D, PENG Z H, et al. Modular adaptive control for los-based cooperative path maneuvering of multiple underactuated autonomous surface vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1613–1624. doi: 10.1109/TSMC.2017.2650219 [91] LIU L, WANG D, PENG Z H, et al. Saturated coordinated control of multiple underactuated unmanned surface vehicles over a closed curve[J]. Science China Information Sciences, 2017, 60(7): 070203. doi: 10.1007/s11432-016-9091-8 [92] WANG H L, LIU L, WANG D, et al. Output-feedback control for cooperative diving of saucer-type underwater gliders based on a fuzzy observer and event-triggered communication[J]. IEEE Access, 2019, 7: 50453–50465. doi: 10.1109/ACCESS.2019.2911194 [93] NAMAKI-SHOUSHTARI O, PEDRO AGUIAR A, KHAKI-SEDIGH A. Target tracking of autonomous robotic vehicles using range‐only measurements: a switched logic-based control strategy[J]. International Journal of Robust and Nonlinear Control, 2012, 22(17): 1983–1998. doi: 10.1002/rnc.1806 [94] SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015, 105: 196–205. doi: 10.1016/j.oceaneng.2015.06.026 [95] GHOMMAM J, SAAD M. Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 852–865. doi: 10.1109/TVT.2017.2760367 [96] HINOSTROZA M A, XU H T, SOARES C G. Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment[J]. Ocean Engineering, 2019, 183: 132–154. doi: 10.1016/j.oceaneng.2019.04.098 [97] WANG J, LIU J Y, YI H. Formation control of unmanned surface vehicles with sensing constraints using exponential remapping method[J]. Mathematical Problems in Engineering, 2017, 2017: 7619086. doi: 10.1155/2017/7619086 [98] HE S D, WANG M, DAI S L, et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 572–581. doi: 10.1109/TⅡ.2018.2839739 [99] LU Y, ZHANG G Q, SUN Z J, et al. Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances[J]. Ocean Engineering, 2018, 167: 36–44. doi: 10.1016/j.oceaneng.2018.08.020 [100] PARK B S, YOO S J. An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels[J]. IEEE Transactions on Cybernetics, 2019, 49(8): 2955–2966. doi: 10.1109/TCYB.2018.2834919 [101] PENG Z H, WANG D, WANG H, et al. Coordinated formation pattern control of multiple marine surface vehicles with model uncertainty and time-varying ocean currents[J]. Neural Computing and Applications, 2014, 25(7/8): 1771–1783. doi: 10.1007/s00521-014-1668-z [102] QIN H D, CHEN H, SUN Y C, et al. The distributed adaptive finite-time chattering reduction containment control for multiple ocean bottom flying nodes[J]. International Journal of Fuzzy Systems, 2019, 21(2): 607–619. doi: 10.1007/s40815-018-0592-2 [103] GU N, WANG D, PENG Z H, et al. Observer-based finite-time control for distributed path maneuvering of underactuated unmanned surface vehicles with collision avoidance and connectivity preservation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. doi: 10.1109/TSMC.2019.2944521 [104] LIU B, CHEN Z Y, ZHANG H T, et al. Collective dynamics and control for multiple unmanned surface vessels[J]. IEEE Transactions on Control Systems Technology, 2019. doi: 10.1109/TCST.2019.2931524 [105] YU J L, XIAO W, DONG X W, et al. Practical formation-containment tracking for multiple autonomous surface vessels system[J]. IET Control Theory & Applications, 2019, 13(17): 2894–2905. doi: 10.1049/iet-cta.2018.6242 [106] BØRHAUG E, PAVLOV A, PANTELEY E, et al. Straight line path following for formations of underactuated marine surface vessels[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 493–506. doi: 10.1109/TCST.2010.2050889 [107] PENG Z H, JIANG Y, WANG J. Event-triggered dynamic surface control of an under-actuated autonomous surface vehicle for target enclosing[J]. IEEE Transactions on Industrial Electronics, 2020. doi: 10.1109/TIE.2020.2978713 [108] LIU L, WANG D, PENG Z H. Coordinated path following of multiple underacutated marine surface vehicles along one curve[J]. ISA Transactions, 2016, 64: 258–268. doi: 10.1016/j.isatra.2016.04.013 [109] SHOJAEI K. Observer-based neural adaptive formation control of autonomous surface vessels with limited torque[J]. Robotics and Autonomous Systems, 2016, 78: 83–96. doi: 10.1016/j.robot.2016.01.005 [110] GLOTZBACH T, SCHNEIDER M, OTTO P. Cooperative line of sight target tracking for heterogeneous unmanned marine vehicle teams: from theory to practice[J]. Robotics and Autonomous Systems, 2015, 67: 53–60. doi: 10.1016/j.robot.2014.09.012 [111] SOARES J M, AGUIAR A P, PASCOAL A M, et al. Joint ASV/AUV range-based formation control: theory and experimental results[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 5579–5585. [112] REGO F, SOARES J M, PASCOAL A, et al. Flexible triangular formation keeping of marine robotic vehicles using range measurements[J]. IFAC Proceedings Volumes, 2014, 47(3): 5145–5150. doi: 10.3182/20140824-6-ZA-1003.02435 -