留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多无人艇集群协同控制研究进展与未来趋势

彭周华 吴文涛 王丹 刘陆

彭周华, 吴文涛, 王丹, 等. 多无人艇集群协同控制研究进展与未来趋势[J]. 中国舰船研究, 2021, 16(1): 51–64, 82 doi: 10.19693/j.issn.1673-3185.01923
引用本文: 彭周华, 吴文涛, 王丹, 等. 多无人艇集群协同控制研究进展与未来趋势[J]. 中国舰船研究, 2021, 16(1): 51–64, 82 doi: 10.19693/j.issn.1673-3185.01923
PENG Z H, WU W T, WANG D, et al. Coordinated control of multiple unmanned surface vehicles: recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51–64, 82 doi: 10.19693/j.issn.1673-3185.01923
Citation: PENG Z H, WU W T, WANG D, et al. Coordinated control of multiple unmanned surface vehicles: recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51–64, 82 doi: 10.19693/j.issn.1673-3185.01923

多无人艇集群协同控制研究进展与未来趋势

doi: 10.19693/j.issn.1673-3185.01923
基金项目: 国家自然科学基金资助项目(61673081, 51979020, 51909021, 51939001);水下机器人重点实验室稳定支持基金资助项目(JCKYS2019604SXJQR-01)
详细信息
    作者简介:

    彭周华,男,1982年生,博士,教授,博士生导师。研究方向:海洋航行器制导与控制,无人船集群控制。 E-mail:zhpeng@dlmu.edu.cn

    吴文涛,男,1995年生,硕士生。研究方向:无人船集群运动控制。E-mail:wuwentaodlmu@gmail.com

    王丹,男,1960年生,博士,教授,博士生导师。研究方向:智能控制理论,无人船集群控制,电力电子技术。E-mail:dwang@dlmu.edu.cn

    刘陆,1990年生,博士,副教授,硕士生导师。研究方向:多无人船集群控制。Email:luliu@dlmu.edu.cn

    通信作者:

    刘陆

  • 中图分类号: U674.91

Coordinated control of multiple unmanned surface vehicles: recent advances and future trends

知识共享许可协议
多无人艇集群协同控制研究进展与未来趋势彭周华,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 当前,海洋航行器呈现智能化、网络化、集群化等重要发展趋势,多无人艇通过协同实现集群化作业,是未来海洋作业的主要形式之一。从无人艇运动数学模型出发,分析了多无人艇集群控制所面临的问题和挑战,根据多无人艇运动不同的场景,从轨迹导引、路径导引、目标导引3个方面综述了多无人艇集群协同控制的研究进展。最后,对多无人艇协同控制的研究方向和未来趋势进行了总结和展望。
  • 图  地球坐标系和艇体坐标系

    Figure  1.  Reference frames: earth-fixed reference frame and body-fixed reference frame

    图  多无人艇协同控制器结构

    Figure  2.  Coordinated control architectures of multiple unmanned surface vehicles

    图  基于轨迹导引的集群控制

    Figure  3.  Trajectory-guided coordinated control

    图  基于路径导引的集群控制

    Figure  4.  Path-guided coordinated control

    图  基于目标导引的集群控制

    Figure  5.  Target-guided coordinated control

    表  轨迹导引、路径导引和目标导引的集群协同控制结构与优缺点

    Table  1.  Coordinated control architectures, their advantages and disadvantages of TRCC, PACC and TACC

    控制结构轨迹导引路径导引目标导引优点缺点
    集中式
    控制
    [34, 51] [11, 22, 35, 47, 77,
    85-92]
    统一决策,全局最优 全局通信,带宽要求高,扩展性差,容错性低
    分散式
    控制
    [14, 27, 41, 52, 53, 56, 75, 79, 82, 84, 93-98] 扩展性强,局部信息模块化 局部最优,无信息交互
    分布式
    控制
    [21, 38, 42, 44, 71, 74, 99-102] [17, 28, 45, 46, 48, 80, 103] [104- 105] 扩展性强,容错性高,信息交互,带宽要求低 拓扑复杂,通信依赖
    下载: 导出CSV

    表  轨迹导引、路径导引和目标导引的集群协同控制器设计方法

    Table  2.  Design methods of coordinated controller for TRCC, PACC, TACC

    设计方法轨迹导引路径导引目标导引
    反步法[34, 51][10, 22, 87, 106][75, 79, 98, 104]
    动态面[42, 44, 71, 74, 100][11, 64, 80, 91][41, 56]
    跟踪微分器[45-48, 90, 103][107]
    指令调节器[17, 28]
    下载: 导出CSV

    表  轨迹导引、路径导引和目标导引的控制方法

    Table  3.  Control methods of TRCC, PACC, TACC

    控制方法轨迹导引路径导引目标导引
    滑模控制[21][20]
    参数自适应[22][41]
    神经网络[42, 44, 71, 100][28, 45, 64, 80, 90- 91][41, 56, 75, 94, 98]
    模糊逻辑[17][107]
    抗扰控制[34, 51][10, 11, 46, 47, 103][9, 56, 105]
    约束控制[38][17][56, 79, 94, 107]
    输出反馈[38, 44, 71][28, 46, 103]
    避障避碰[34, 51, 100][46, 80, 103][75, 98]
    连通保持[100][46, 80, 103][75]
    下载: 导出CSV
  • [1] PENG Z H, WANG J, WANG D, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 732–745. doi: 10.1109/TⅡ.2020.3004343
    [2] LIU Z X, ZHANG Y M, YU X, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews In Control, 2016, 41: 71–93. doi: 10.1016/j.arcontrol.2016.04.018
    [3] 徐玉如, 苏玉民, 庞永杰. 海洋空间智能无人运载器技术发展展望[J]. 中国舰船研究, 2006, 1(3): 1–4. doi: 10.3969/j.issn.1673-3185.2006.03.001

    XU Y R, SU Y M, PANG Y J. Expectation of the development in the technology on ocean space intelligent unmanned vehicles[J]. Chinese Journal of Ship Research, 2006, 1(3): 1–4 (in Chinese). doi: 10.3969/j.issn.1673-3185.2006.03.001
    [4] ROBERTS G N. Trends in marine control systems[J]. Annual Reviews in Control, 2008, 32(2): 263–269. doi: 10.1016/j.arcontrol.2008.08.002
    [5] 金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1–8.

    JIN K F, WANG H D, YI H, et al. Key technologies and intelligence evolution of maritime UV[J]. Chinese Journal of Ship Research, 2018, 13(6): 1–8 (in Chinese).
    [6] YAN R J, PANG S, SUN H B, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application, 2010, 9(4): 451–457. doi: 10.1007/s11804-010-1033-2
    [7] 廖煜雷, 张铭钧, 董早鹏, 等. 无人艇运动控制方法的回顾与展望[J]. 中国造船, 2014, 55(4): 206–216. doi: 10.3969/j.issn.1000-4882.2014.04.025

    LIAO Y L, ZHANG M J, DONG Z P, et al. Methods of motion control for unmanned surface vehicle: state of the art and perspective[J]. Shipbuilding of China, 2014, 55(4): 206–216 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.04.025
    [8] 赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65.

    ZHAO R, XU J, XIANG X B, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65 (in Chinese).
    [9] JIANG Y, PENG Z H, WANG D, et al. Line-of-sight target enclosing of an underactuated autonomous surface vehicle with experiment results[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 832–841. doi: 10.1109/TⅡ.2019.2923664
    [10] LIU L, WANG D, PENG Z H, et al. Cooperative path following ring-networked under-actuated autonomous surface vehicles: algorithms and experimental results[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1519–1529. doi: 10.1109/TCYB.2018.2883335
    [11] GU N, PENG Z H, WANG D, et al. Antidisturbance coordinated path following control of robotic autonomous surface vehicles: theory and experiment[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2386–2396. doi: 10.1109/TMECH.2019.2929216
    [12] LIU L, WANG D, PENG Z H, et al. Predictor-based LOS guidance law for path following of underactuated marine surface vehicles with sideslip compensation[J]. Ocean Engineering, 2016, 124: 340–348. doi: 10.1016/j.oceaneng.2016.07.057
    [13] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley & Sons, 2011.
    [14] BREIVIK M, HOVSTEIN V E, FOSSEN T I. Straight-line target tracking for unmanned surface vehicles[J]. Modeling, Identification and Control, 2008, 29(4): 131–149. doi: 10.4173/mic.2008.4.2
    [15] SONNENBURG C R, WOOLSEY C A. Modeling, identification, and control of an unmanned surface vehicle[J]. Journal of Field Robotics, 2013, 30(3): 371–398. doi: 10.1002/rob.21452
    [16] TEE K P, GE S S. Control of fully actuated ocean surface vessels using a class of feedforward approximators[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 750–756. doi: 10.1109/TCST.2006.872507
    [17] PENG Z H, WANG J, WANG D. Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1083–1090. doi: 10.1109/TCST.2017.2699167
    [18] DAI S L, WANG C, LUO F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 801–810. doi: 10.1109/TⅡ.2012.2205584
    [19] 曹诗杰, 陈于涛, 曾凡明. 基于改进强化学习的无人艇集群一致性控制[J]. 华中科技大学学报(自然科学版), 2019, 47(9): 42–47.

    CAO S J, CHEN Y T, ZENG F M. Consensus control of unmanned surface vehicle group based on advanced reinforcement learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(9): 42–47 (in Chinese).
    [20] FAHIMI F. Sliding-mode formation control for underactuated surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3): 617–622. doi: 10.1109/TRO.2007.898961
    [21] LI T S, ZHAO R, CHEN C L P, et al. Finite-time formation control of under-actuated ships using nonlinear sliding mode control[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3243–3253. doi: 10.1109/TCYB.2018.2794968
    [22] ALMEIDA J, SILVESTRE C, PASCOAL A. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty[J]. International Journal of Robust and Nonlinear Control, 2010, 20(14): 1549–1565. doi: 10.1002/rnc.1526
    [23] DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713–1722. doi: 10.1016/j.automatica.2006.04.026
    [24] 胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7. doi: 10.19693/j.issn.1673-3185.01521

    HU J Z, TANG G Y, WANG J J, et al. Swarm control of USVs based on adaptive backstepping combined with sliding mode[J]. Chinese Journal of Ship Research, 2019, 14(6): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01521
    [25] DO K D. Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267–278. doi: 10.1016/j.oceaneng.2015.10.038
    [26] CUI R X, ZHANG X, CUI D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities[J]. Ocean Engineering, 2016, 123: 45–54. doi: 10.1016/j.oceaneng.2016.06.041
    [27] CUI R X, GE S S, VOON EE HOW B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17/18): 1491–1502. doi: 10.1016/j.oceaneng.2010.07.006
    [28] PENG Z H, WANG J, WANG D. Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3831–3839. doi: 10.1109/TIE.2017.2652346
    [29] PENG Z, WANG D, HU X. Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics[J]. IET Control Theory & Applications, 2011, 5(12): 1378–1387. doi: 10.1049/iet-cta.2010.0429
    [30] CHEN L P, CUI R X, YANG C G, et al. Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4024–4035. doi: 10.1109/TIE.2019.2914631
    [31] XIANG X B, YU C Y, ZHANG Q. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties[J]. Computers & Operations Research, 2017, 84: 165–177. doi: 10.1016/j.cor.2016.09.017
    [32] CHEN X T, TAN W W. Tracking control of surface vessels via fault-tolerant adaptive backstepping interval type-2 fuzzy control[J]. Ocean Engineering, 2013, 70: 97–109. doi: 10.1016/j.oceaneng.2013.05.021
    [33] 曹诗杰, 曾凡明, 陈于涛. 无人水面艇航向航速协同控制方法[J]. 中国舰船研究, 2015, 10(6): 74–80. doi: 10.3969/j.issn.1673-3185.2015.06.011

    CAO S J, ZENG F M, CHEN Y T. The course and speed cooperative control method for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2015, 10(6): 74–80 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.06.011
    [34] DO K D. Synchronization motion tracking control of multiple underactuated ships with collision avoidance[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2976–2989. doi: 10.1109/TIE.2016.2523453
    [35] DO K D. Formation control of underactuated ships with elliptical shape approximation and limited communication ranges[J]. Automatica, 2012, 48(7): 1380–1388. doi: 10.1016/j.automatica.2011.11.013
    [36] LIU L, WANG D, PENG Z H. ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J]. IEEE Journal of Oceanic Engineering, 2017, 42(2): 477–487. doi: 10.1109/JOE.2016.2569218
    [37] PENG Z H, WANG J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(4): 535–544. doi: 10.1109/TSMC.2017.2697447
    [38] FU M Y, YU L L. Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances[J]. Ocean Engineering, 2018, 159: 219–227. doi: 10.1016/j.oceaneng.2018.04.016
    [39] 吴文涛, 古楠, 彭周华, 等. 多领航者导引无人船集群的分布式时变队形控制[J]. 中国舰船研究, 2020, 15(1): 21–30.

    WU W T, GU N, PENG Z H, et al. Distributed time-varying formation control for unmanned surface vehicles guided by multiple leaders[J]. Chinese Journal of Ship Research, 2020, 15(1): 21–30 (in Chinese).
    [40] CHEN M, GE S S, VOON EE HOW B, et al. Robust adaptive position mooring control for marine vessels[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 395–409. doi: 10.1109/TCST.2012.2183676
    [41] PENG Z H, WANG D, CHEN Z Y, et al. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 513–520. doi: 10.1109/TCST.2011.2181513
    [42] PENG Z H, WANG D, LI T S. Predictor-based neural dynamic surface control for distributed formation tracking of multiple marine surface vehicles with improved transient performance[J]. Science China Information Sciences, 2016, 59(9): 92210. doi: 10.1007/s11432-015-5384-9
    [43] PENG Z H, WANG D, LI T S, et al. Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics[J]. Nonlinear Dynamics, 2013, 74(1/2): 95–106. doi: 10.1007/s11071-013-0951-3
    [44] PENG Z H, WANG D, WANG J. Cooperative dynamic positioning of multiple marine offshore vessels: a modular design[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1210–1221. doi: 10.1109/TMECH.2015.2508647
    [45] PENG Z H, WANG J, WANG D. Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 1026–1036. doi: 10.1109/TMECH.2016.2632304
    [46] PENG Z H, WANG D, LI T S, et al. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2527–2535. doi: 10.1109/TCYB.2019.2914717
    [47] GU N, WANG D, PENG Z H, et al. Adaptive bounded neural network control for coordinated path-following of networked underactuated autonomous surface vehicles under time-varying state-dependent cyber-attack[J]. ISA Transactions, 2019, 104: 212–221. doi: 10.1016/j.isatra.2018.12.051
    [48] GU N, WANG D, PENG Z H, et al. Distributed containment maneuvering of uncertain under-actuated unmanned surface vehicles guided by multiple virtual leaders with a formation[J]. Ocean Engineering, 2019, 187: 105996. doi: 10.1016/j.oceaneng.2019.04.077
    [49] PENG Z H, WANG J S, WANG J. Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3627–3635. doi: 10.1109/TIE.2018.2856180
    [50] PENG Z H, WANG J, HAN Q L. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8724–8732. doi: 10.1109/TIE.2018.2885726
    [51] DO K D. Practical formation control of multiple underactuated ships with limited sensing ranges[J]. Robotics and Autonomous Systems, 2011, 59(6): 457–471. doi: 10.1016/j.robot.2011.03.003
    [52] ABREU P C, PASCOAL A M. Formation control in the scope of the MORPH project. Part I: theoretical foundations[J]. IFAC-PapersOnLine, 2015, 48(2): 244–249. doi: 10.1016/j.ifacol.2015.06.040
    [53] ABREU P C, BAYAT M, PASCOAL A M, et al. Formation control in the scope of the MORPH project, part Ⅱ: implementation and results[J]. IFAC-PapersOnLine, 2015, 48(2): 250–255. doi: 10.1016/j.ifacol.2015.06.041
    [54] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8): 1362–1379. doi: 10.1109/TAC.2007.902731
    [55] LI J H, LEE P M, JUN B H, et al. Point-to-point navigation of underactuated ships[J]. Automatica, 2008, 44(12): 3201–3205. doi: 10.1016/j.automatica.2008.08.003
    [56] LIU L, WANG D, PENG Z H, et al. Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1241–1249. doi: 10.1109/TNNLS.2018.2868978
    [57] FOSSEN T I, PETTERSEN K Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws[J]. Automatica, 2014, 50(11): 2912–2917. doi: 10.1016/j.automatica.2014.10.018
    [58] CAHARIJA W, PETTERSEN K Y, BIBULI M, et al. Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1623–1642. doi: 10.1109/TCST.2015.2504838
    [59] CHEN M, JIANG B, CUI R X. Actuator fault-tolerant control of ocean surface vessels with input saturation[J]. International Journal of Robust and Nonlinear Control, 2016, 26(3): 542–564. doi: 10.1002/rnc.3324
    [60] ZHENG Z W, SUN L. Path following control for marine surface vessel with uncertainties and input saturation[J]. Neurocomputing, 2016, 177: 158–167. doi: 10.1016/j.neucom.2015.11.017
    [61] HE W, YIN Z, SUN C Y. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function[J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1641–1651. doi: 10.1109/TCYB.2016.2554621
    [62] CHWA D. Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1357–1370. doi: 10.1109/tcst.2010.2090526
    [63] YAN Z, WANG J. Model predictive control for tracking of underactuated vessels based on recurrent neural networks[J]. IEEE Journal of Oceanic Engineering, 2012, 37(4): 717–726. doi: 10.1109/JOE.2012.2201797
    [64] WANG H, WANG D, PENG Z H. Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation[J]. Nonlinear Dynamics, 2014, 77(1/2): 107–117. doi: 10.1007/s11071-014-1277-5
    [65] OH S R, SUN J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering, 2010, 37(2/3): 289–295. doi: 10.1016/j.oceaneng.2009.10.004
    [66] FOSSEN T I, PEREZ T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine, 2009, 29(6): 32–46. doi: 10.1109/MCS.2009.934408
    [67] LIU L, WANG D, PENG Z H. State recovery and disturbance estimation of unmanned surface vehicles based on nonlinear extended state observers[J]. Ocean Engineering, 2019, 171: 625–632. doi: 10.1016/j.oceaneng.2018.11.008
    [68] YU L L, FU M Y. A robust finite-time output feedback control scheme for marine surface vehicles formation[J]. IEEE Access, 2018, 6: 41291–41301. doi: 10.1109/ACCESS.2018.2857620
    [69] ZHANG J Q, YU S H, YAN Y. Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances[J]. Ocean Engineering, 2019, 186: 106109. doi: 10.1016/j.oceaneng.2019.05.078
    [70] LIU L, ZHANG W D, WANG D, et al. Event-triggered extended state observers design for dynamic positioning vessels subject to unknown sea loads[J]. Ocean Engineering, 2020, 209: 107242. doi: 10.1016/j.oceaneng.2020.107242
    [71] PENG Z H, WANG D, SHI Y, et al. Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders[J]. Information Sciences, 2015, 316: 163–179. doi: 10.1016/j.ins.2015.04.025
    [72] PENG Z H, WANG D, LIU H H T, et al. Distributed robust state and output feedback controller designs for rendezvous of networked autonomous surface vehicles using neural networks[J]. Neurocomputing, 2013, 115: 130–141. doi: 10.1016/j.neucom.2013.01.010
    [73] ZEREIK E, BIBULI M, MIŠKOVIĆ N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46: 350–368. doi: 10.1016/j.arcontrol.2018.10.002
    [74] YOO S J, PARK B S. Guaranteed performance design for distributed bounded containment control of networked uncertain underactuated surface vessels[J]. Journal of the Franklin Institute, 2017, 354(3): 1584–1602. doi: 10.1016/j.jfranklin.2016.12.008
    [75] DAI S L, HE S D, LIN H, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237–4246. doi: 10.1109/TIE.2017.2758743
    [76] ARRICHIELLO F, CHIAVERINI S, FOSSEN T I. Formation control of marine surface vessels using the null-space-based behavioral control[M]//PETTERSEN K Y, GRAVDAHL J T, NIJMEIJER H. Group Coordination and Cooperative Control. Berlin, Heidelberg: Springer, 2006: 1–19.
    [77] SKJETNE R, MOI S, FOSSEN T I. Nonlinear formation control of marine craft[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002: 1699-1704.
    [78] 吕光颢, 彭周华, 王丹, 等. 无人船集群队形重构的目标任务分配[J]. 中国舰船研究, 2018, 13(6): 101–106.

    LYU G H, PENG Z H, WANG D, et al. Target assignment in formation reconfiguration for swarms of unmanned ships[J]. Chinese Journal of Ship Research, 2018, 13(6): 101–106 (in Chinese).
    [79] JIN X. Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints[J]. Automatica, 2016, 68: 228–236. doi: 10.1016/j.automatica.2016.01.064
    [80] PENG Z H, GU N, ZHANG Y, et al. Path-guided time-varying formation control with collision avoidance and connectivity preservation of under-actuated autonomous surface vehicles subject to unknown input gains[J]. Ocean Engineering, 2019, 191: 106501. doi: 10.1016/j.oceaneng.2019.106501
    [81] PENG Z H, WANG D, ZHANG H W, et al. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(8): 1508–1519. doi: 10.1109/tnnls.2013.2293499
    [82] SUN Z J, ZHANG G Q, LU Y, et al. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation[J]. ISA Transactions, 2018, 72: 15–24. doi: 10.1016/j.isatra.2017.11.008
    [83] SHOJAEI K, DOLATSHAHI M. Line-of-sight target tracking control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2017, 133: 244–252. doi: 10.1016/j.oceaneng.2017.02.007
    [84] SINISTERRA A J, DHANAK M R, VON ELLENRIEDER K. Stereovision-based target tracking system for USV operations[J]. Ocean Engineering, 2017, 133: 197–214. doi: 10.1016/j.oceaneng.2017.01.024
    [85] IHLE I A F, ARCAK M, FOSSEN T I. Passivity-based designs for synchronized path-following[J]. Automatica, 2007, 43(9): 1508–1518. doi: 10.1016/j.automatica.2007.02.018
    [86] GHOMMAM J, MNIF F. Coordinated path-following control for a group of underactuated surface vessels[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3951–3963. doi: 10.1109/TIE.2009.2028362
    [87] ALMEIDA J, SILVESTRE C, PASCOAL A M. Cooperative control of multiple surface vessels with discrete-time periodic communications[J]. International Journal of Robust and Nonlinear Control, 2012, 22(4): 398–419. doi: 10.1002/rnc.1698
    [88] GHABCHELOO R, AGUIAR A P, PASCOAL A, et al. Coordinated path-following in the presence of communication losses and time delays[J]. SIAM Journal on Control and Optimization, 2009, 48(1): 234–265. doi: 10.1137/060678993
    [89] WANG H, WANG D, PENG Z H. Neural network based adaptive dynamic surface control for cooperative path following of marine surface vehicles via state and output feedback[J]. Neurocomputing, 2014, 133: 170–178. doi: 10.1016/j.neucom.2013.11.019
    [90] LIU L, WANG D, PENG Z H, et al. Modular adaptive control for los-based cooperative path maneuvering of multiple underactuated autonomous surface vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1613–1624. doi: 10.1109/TSMC.2017.2650219
    [91] LIU L, WANG D, PENG Z H, et al. Saturated coordinated control of multiple underactuated unmanned surface vehicles over a closed curve[J]. Science China Information Sciences, 2017, 60(7): 070203. doi: 10.1007/s11432-016-9091-8
    [92] WANG H L, LIU L, WANG D, et al. Output-feedback control for cooperative diving of saucer-type underwater gliders based on a fuzzy observer and event-triggered communication[J]. IEEE Access, 2019, 7: 50453–50465. doi: 10.1109/ACCESS.2019.2911194
    [93] NAMAKI-SHOUSHTARI O, PEDRO AGUIAR A, KHAKI-SEDIGH A. Target tracking of autonomous robotic vehicles using range‐only measurements: a switched logic-based control strategy[J]. International Journal of Robust and Nonlinear Control, 2012, 22(17): 1983–1998. doi: 10.1002/rnc.1806
    [94] SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015, 105: 196–205. doi: 10.1016/j.oceaneng.2015.06.026
    [95] GHOMMAM J, SAAD M. Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 852–865. doi: 10.1109/TVT.2017.2760367
    [96] HINOSTROZA M A, XU H T, SOARES C G. Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment[J]. Ocean Engineering, 2019, 183: 132–154. doi: 10.1016/j.oceaneng.2019.04.098
    [97] WANG J, LIU J Y, YI H. Formation control of unmanned surface vehicles with sensing constraints using exponential remapping method[J]. Mathematical Problems in Engineering, 2017, 2017: 7619086. doi: 10.1155/2017/7619086
    [98] HE S D, WANG M, DAI S L, et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 572–581. doi: 10.1109/TⅡ.2018.2839739
    [99] LU Y, ZHANG G Q, SUN Z J, et al. Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances[J]. Ocean Engineering, 2018, 167: 36–44. doi: 10.1016/j.oceaneng.2018.08.020
    [100] PARK B S, YOO S J. An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels[J]. IEEE Transactions on Cybernetics, 2019, 49(8): 2955–2966. doi: 10.1109/TCYB.2018.2834919
    [101] PENG Z H, WANG D, WANG H, et al. Coordinated formation pattern control of multiple marine surface vehicles with model uncertainty and time-varying ocean currents[J]. Neural Computing and Applications, 2014, 25(7/8): 1771–1783. doi: 10.1007/s00521-014-1668-z
    [102] QIN H D, CHEN H, SUN Y C, et al. The distributed adaptive finite-time chattering reduction containment control for multiple ocean bottom flying nodes[J]. International Journal of Fuzzy Systems, 2019, 21(2): 607–619. doi: 10.1007/s40815-018-0592-2
    [103] GU N, WANG D, PENG Z H, et al. Observer-based finite-time control for distributed path maneuvering of underactuated unmanned surface vehicles with collision avoidance and connectivity preservation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. doi: 10.1109/TSMC.2019.2944521
    [104] LIU B, CHEN Z Y, ZHANG H T, et al. Collective dynamics and control for multiple unmanned surface vessels[J]. IEEE Transactions on Control Systems Technology, 2019. doi: 10.1109/TCST.2019.2931524
    [105] YU J L, XIAO W, DONG X W, et al. Practical formation-containment tracking for multiple autonomous surface vessels system[J]. IET Control Theory & Applications, 2019, 13(17): 2894–2905. doi: 10.1049/iet-cta.2018.6242
    [106] BØRHAUG E, PAVLOV A, PANTELEY E, et al. Straight line path following for formations of underactuated marine surface vessels[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 493–506. doi: 10.1109/TCST.2010.2050889
    [107] PENG Z H, JIANG Y, WANG J. Event-triggered dynamic surface control of an under-actuated autonomous surface vehicle for target enclosing[J]. IEEE Transactions on Industrial Electronics, 2020. doi: 10.1109/TIE.2020.2978713
    [108] LIU L, WANG D, PENG Z H. Coordinated path following of multiple underacutated marine surface vehicles along one curve[J]. ISA Transactions, 2016, 64: 258–268. doi: 10.1016/j.isatra.2016.04.013
    [109] SHOJAEI K. Observer-based neural adaptive formation control of autonomous surface vessels with limited torque[J]. Robotics and Autonomous Systems, 2016, 78: 83–96. doi: 10.1016/j.robot.2016.01.005
    [110] GLOTZBACH T, SCHNEIDER M, OTTO P. Cooperative line of sight target tracking for heterogeneous unmanned marine vehicle teams: from theory to practice[J]. Robotics and Autonomous Systems, 2015, 67: 53–60. doi: 10.1016/j.robot.2014.09.012
    [111] SOARES J M, AGUIAR A P, PASCOAL A M, et al. Joint ASV/AUV range-based formation control: theory and experimental results[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 5579–5585.
    [112] REGO F, SOARES J M, PASCOAL A, et al. Flexible triangular formation keeping of marine robotic vehicles using range measurements[J]. IFAC Proceedings Volumes, 2014, 47(3): 5145–5150. doi: 10.3182/20140824-6-ZA-1003.02435
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1919
  • HTML全文浏览量:  878
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-08-01
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回