Built-in test technology for electro-hydraulic servo-valve amplifier
-
摘要:
目的 电液伺服阀的工作环境恶劣、测试性设计欠缺,为了提高电液伺服阀的易用性和维修性,需开展机内测试设计。 方法 针对电液伺服阀内放大器的特点,提出一体化机内测试(BIT)方法,开展BIT软/硬件实现和防虚警措施的具体设计,并搭建闭环电液伺服系统进行验证。 结果 试验结果表明,该BIT设计方法可行,实现了在线、快速的故障检测功能。 结论 BIT方法是降低电液伺服系统全寿期维护成本的有效途径,具有一定的工程应用价值。 -
关键词:
- 电液伺服阀放大器 /
- 一体化机内测试(BIT) /
- 故障检测与隔离 /
- 故障码
Abstract:Objectives The electro-hydraulic servo valve operates in a harsh working environment but lacks integrated testability. In order to improve the usability and maintainability of electro-hydraulic servo valves, it is necessary to design a built-in test (BIT). Methods A BIT method involving the characteristics of the valve amplifier is proposed. On this basis, the implementation of BIT software/hardware and the concrete design of anti-false alarm measures are given, and a closed-loop electro-hydraulic servo system is constructed for verification. Results The verification test results show that this design method is feasible and can quickly detect faults online. Conclusions The BIT method is an effective way to reduce the maintenance cost of the electro-hydraulic servo system life cycle, giving it certain engineering application value. -
表 1 伺服阀放大器的故障模式影响分析表
Table 1. Analysis table of failure mode effect of the servo-valve amplifier
故障码 故障模式名称 故障影响 故障检测方法 00-10-01.01 放大器双相PWM信号驱动的输出断相故障 伺服阀失控,油缸跑偏 检测输出PWM信号电流,以此测试输出断相故障 00-10-01.02 微处理器程序“跑飞”或死机故障 伺服阀控制信号输出未知的结果,伺服系统失控 检测微处理器的定时输出脉冲,以此测试微处理器是否正常运行 00-10-01.03 A/D转换信号错误故障 控制输出的解算错误,导致伺服阀控制偏差或失控 基于A/D转换器芯片的特点,在特定的通道施加固定电压,以此测试A/D转换电路的完好性 00-10-01.04 伺服阀先导阀的阀芯卡滞故障 伺服阀无法运动,伺服阀控制功能失效 检测伺服阀先导阀的阀芯位移电压,并通过算法确认是否卡滞 表 2 电液伺服阀放大器BIT验证试验的结果
Table 2. Result of BIT verification test of the electro-hydraulic servo-valve amplifier
故障模式 故障原因 试验手段 故障注入
成功判据检测
方法故障检测
成功判据故障是否
成功检测故障隔离
成功判据故障是否
成功隔离编码 名称 00-10-01.01 放大器双相PWM信号驱动的输出断相故障 1)放大器输出电路A相或B相通道器件断路;2)放大器面板的外部电缆接线断路 断开放大器与伺服阀之间的驱动连线 示波器检测到伺服阀电磁铁两端的PWM波形消失 BIT 单故障注入,伺服阀控制的油缸无运动 是 测试微处理器将故障码00-10-01.01发送至上位机 是 00-10-01.02 功能微处理器程序“跑飞”或死机故障 1)功能微处理器芯片故障;2)微处理器外部的看门狗电路故障 将微处理器的复位脚电平
拉低微处理器运行指示灯停止
闪烁BIT 单故障注入,微处理器与上位机通信的心跳信号消失 是 测试微处理器将故障码00-10-01.02发送至上位机 是 00-10-01.03 A/D转换电路输入信号错误故障 A/D转换芯片或外围电路故障 去除放大器电路板上的A/D芯片 上位机无法得到固定的5 V 电压值 BIT 单故障注入,上位机无法得到固定的5 V 电压值 是 测试微处理器将故障码00-10-01.03发送至上位机 是 00-10-01.04 伺服阀先导阀的阀芯卡滞故障 伺服阀先导阀内的金属碎屑导致卡滞 将伺服阀先导阀的阀芯位移电压接信号地 伺服阀先导阀的阀芯位移电压信号为0 V,且保持不变 BIT 单故障注入,伺服阀先导阀的阀芯位移电压信号不变 是 测试微处理器将故障码00-10-01.04发送至上位机 是 -
[1] 李其朋. 直动式电液伺服阀关键技术的研究[D]. 杭州: 浙江大学, 2005.LI Q P. Research on the key technologies of direct drive servo valve[D]. Hangzhou: Zhejiang University, 2005(in Chinese). [2] 李言军. 电液伺服/比例放大器的研究[D]. 杭州: 浙江大学, 2007.LI Y J. Research on the electrohydraulic servo/proportional amplifier[D]. Hangzhou: Zhejiang University, 2007(in Chinese). [3] 宋文杰, 谈宏华, 黄明, 等. 电液位置伺服控制系统的研究[J]. 液压与气动, 2019(6): 116–121. doi: 10.11832/j.issn.1000-4858.2019.06.022SONG W J, TAN H H, HUANG M, et al. Electro-hydraulic position servo control system[J]. Chinese Hydraulics & Pneumatics, 2019(6): 116–121 (in Chinese). doi: 10.11832/j.issn.1000-4858.2019.06.022 [4] 王利宁, 王林, 董玉忠. 电液压力伺服阀故障分析研究[J]. 液压气动与密封, 2019(9): 78–81. doi: 10.3969/j.issn.1008-0813.2019.09.023WANG L N, WANG L, DONG Y Z. Study on electro-hydraulic pressure servo valve's fault analysis[J]. Hydraulics Pneumatics & Seals, 2019(9): 78–81 (in Chinese). doi: 10.3969/j.issn.1008-0813.2019.09.023 [5] 姚坤杉. 基于电液伺服阀的液压系统控制器的研究[D]. 镇江: 江苏科技大学, 2019.YAO K S. Research on hydraulic system controller based on electro-hydraulic servo valve[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019(in Chinese). [6] 田灵飞, 钱林方, 陈龙淼, 等. 基于未知输入观测器的车载炮电液位置伺服系统故障检测[J]. 兵工学报, 2018, 39(11): 2100–2108. doi: 10.3969/j.issn.1000-1093.2018.11.003TIAN L F, QIAN L F, CHEN L M, et al. Fault detection for an electro-hydraulic position servo system of vehicle-mounted howitzer based on unknown input observer[J]. Acta Armamentarii, 2018, 39(11): 2100–2108 (in Chinese). doi: 10.3969/j.issn.1000-1093.2018.11.003 [7] 曾聪. 飞控系统故障诊断方法研究与实现[D]. 成都: 电子科技大学, 2019.ZENG C. Research and implementation of fault diagnosis method for flight control system[D]. Chengdu: University of Electronic Science and Technology of China, 2019(in Chinese). [8] 俞军涛, 吴帅, 康荣杰, 等. 基于OP放大器的伺服电流驱动电路[C]//第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议文集. 北京, 中国: 中国航空学会, 中国机械工程学会, 2008.YU J T, WU S, KANG R J, et al. The design of servo-current drive circuit by OP amplifier[C]//Proceedings of the 5th National Conference on Fluid Transmission and Control and the 2008 China Society of Aeronautics Hydraulic and Pneumatic Conference. Beijing, China: Chinese Society of Aeronautics and Astronautics, Chinese Mechanical Engineering Society, 2008 (in Chinese). [9] 纪亚飞, 钱康, 宋江滨. 多功能高品质伺服放大器的设计[J]. 工业仪表与自动化装置, 2006(1): 54–56. doi: 10.3969/j.issn.1000-0682.2006.01.017JI Y F, QIAN K, SONG J B. The design of multifunctional servo-magnifiers with heigh accuracy[J]. Industrial Instrumentation & Automation, 2006(1): 54–56 (in Chinese). doi: 10.3969/j.issn.1000-0682.2006.01.017 [10] 王鉴渊, 李光升. BIT技术发展及应用综述[J]. 计算机测量与控制, 2018, 26(4): 1–4.WANG J Y, LI G S. A summary of BIT technology and its application[J]. Computer Measurement and Control, 2018, 26(4): 1–4 (in Chinese). [11] 张琦, 丁剑, 贾爱梅. 大型设备测试性技术研究现状分析[J]. 机械制造与自动化, 2013, 42(4): 9–12, 20. doi: 10.3969/j.issn.1671-5276.2013.04.003ZHANG Q, DING J, JIA A M. Research state on testability technology of large scale device[J]. Machine Building & Automation, 2013, 42(4): 9–12, 20 (in Chinese). doi: 10.3969/j.issn.1671-5276.2013.04.003 -