留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制

杨忠凯 仲伟波 冯友兵 孙彬

杨忠凯, 仲伟波, 冯友兵, 等. 基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制[J]. 中国舰船研究, 2021, 16(1): 121–127, 135 doi: 10.19693/j.issn.1673-3185.01842
引用本文: 杨忠凯, 仲伟波, 冯友兵, 等. 基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制[J]. 中国舰船研究, 2021, 16(1): 121–127, 135 doi: 10.19693/j.issn.1673-3185.01842
YANG Z K, ZHONG W B, FENG Y B, et al. Unmanned surface vehicle track control based on improved LOS and ADRC[J]. Chinese Journal of Ship Research, 2021, 16(1): 121–127, 135 doi: 10.19693/j.issn.1673-3185.01842
Citation: YANG Z K, ZHONG W B, FENG Y B, et al. Unmanned surface vehicle track control based on improved LOS and ADRC[J]. Chinese Journal of Ship Research, 2021, 16(1): 121–127, 135 doi: 10.19693/j.issn.1673-3185.01842

基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制

doi: 10.19693/j.issn.1673-3185.01842
基金项目: 国家重点研发计划资助项目(2018YFC0309100);江苏省重点研发计划资助项目(BE2016009-3)
详细信息
    作者简介:

    杨忠凯,男,1994年生,硕士生。研究方向:信号与信息处理。E-mail:649274721@qq.com

    仲伟波,男,1975年生,博士,副教授。研究方向:控制理论与控制工程,通信与信息系统。E-mail:vebo_cn@163.com

    冯友兵,男,1978年生,博士,副教授。研究方向:控制理论与控制工程,通信与信息系统。E-mail:4450208@qq.com

    通信作者:

    仲伟波

  • 中图分类号: U664.82

Unmanned surface vehicle track control based on improved LOS and ADRC

知识共享许可协议
基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制杨忠凯,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  无人艇(USV)在复杂环境情况下会出现偏离目标航线的情况,为提高水面无人艇的抗干扰能力及实际航行的稳定性,实现对航迹的准确控制,提出一种改进的无人艇航迹控制方法。  方法  根据导航信号受环境影响的情况,对GPS信号有效和无效2种情况下的航迹控制分别进行分析,在自主可控平台上设计并实现了基于模糊控制可变船长比的视线导引算法(LOS)和自抗扰航向控制器(ADRC)相结合的航迹控制方法,并开展了双桨双舵无人艇湖上试验。  结果  仿真结果表明:该方法可满足航迹控制的要求,转弯后航向能够快速保持稳定,无频繁摆舵现象,且该方法能够完成真实环境下的航迹控制,航迹贴线误差均值约为0.1 m,方差约为0.03。  结论  湖上试验结果验证了该算法在实际工程应用中的可行性和有效性。
  • 图  1  无人艇LOS航迹控制原理图

    Figure  1.  Schematic diagram of LOS track control for USV

    图  2  无人艇有遮挡航迹控制示意图

    Figure  2.  Schematic of covered track control for USV

    图  3  航迹控制系统框图

    Figure  3.  System diagram of track control

    图  4  自抗扰控制器结构图

    Figure  4.  Structure diagram of ADRC

    图  5  航迹控制软件框图

    Figure  5.  Software block diagram of track control

    图  6  Simulink航迹仿真框图

    Figure  6.  System diagram of track control using Simulink

    图  7  航迹仿真图

    Figure  7.  Diagram of track

    图  8  无人艇航向与舵角仿真结果

    Figure  8.  Simulation result of headings and rudder angle of USV

    图  9  试验无人艇

    Figure  9.  Tested USV

    图  10  用户界面

    Figure  10.  User interface

    图  11  航迹跟踪结果

    Figure  11.  Track tracing results

    图  12  无人艇航迹误差

    Figure  12.  Track error of USV

    表  1  船长比模糊控制表

    Table  1.   Fuzzy control table of ship length ratio

    ECE
    ZOPVSPSPMPB
    NB PS PS PS PVS PVS
    NS PM PM PS PVS PVS
    ZO PB PB PS PVS PVS
    PS PM PM PS PVS PVS
    PB PS PS PS PVS PVS
    下载: 导出CSV
  • [1] 柳晨光, 初秀民, 吴青, 等. USV发展现状及展望[J]. 中国造船, 2014, 55(4): 194–205. doi: 10.3969/j.issn.1000-4882.2014.04.024

    LIU C G, CHU X M, WU Q, et al. A review and prospect of USV research[J]. Shipbuilding of China, 2014, 55(4): 194–205 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.04.024
    [2] 廖煜雷, 张铭钧, 董早鹏, 等. 无人艇运动控制方法的回顾与展望[J]. 中国造船, 2014, 55(4): 206–216. doi: 10.3969/j.issn.1000-4882.2014.04.025

    LIAO Y L, ZHANG M J, DONG Z P, et al. Methods of motion control for unmanned surface vehicle: state of the art and perspective[J]. Shipbuilding of China, 2014, 55(4): 206–216 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.04.025
    [3] 王常顺, 肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54–59, 75. doi: 10.6040/j.issn.1672-3961.0.2016.010

    WANG C S, XIAO H R. Path following controller for unmanned surface vessels based on ADRC[J]. Journal of Shandong University (Engineering Science), 2016, 46(4): 54–59, 75 (in Chinese). doi: 10.6040/j.issn.1672-3961.0.2016.010
    [4] BORHAUG E, PAVLOV A, PETTERSEN K Y. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents[C]//Proceedings of the 2008 47th IEEE Conference on Decision and Control. Cancun: IEEE, 2008: 4984−4991.
    [5] 余亚磊, 苏荣彬, 冯旭, 等. 基于速变LOS的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163–171. doi: 10.19693/j.issn.1673-3185.01377

    YU Y L, SU R B, FENG X, et al. Tracking control of backstepping adaptive path of unmanned surface vessels based on surge-varying LOS[J]. Chinese Journal of Ship Research, 2019, 14(3): 163–171 (in Chinese). doi: 10.19693/j.issn.1673-3185.01377
    [6] 仲伟波, 卢章成, 冯友兵, 等. 双桨驱动水面无人艇航行控制研究与实现[J]. 中国造船, 2019, 60(3): 194–202. doi: 10.3969/j.issn.1000-4882.2019.03.020

    ZHONG W B, LU Z C, FENG Y B, et al. Design and implementation of motion control system for unmanned surface vessel with two propellers[J]. Shipbuilding of China, 2019, 60(3): 194–202 (in Chinese). doi: 10.3969/j.issn.1000-4882.2019.03.020
    [7] 董早鹏, 刘涛, 万磊, 等. 基于Takagi-Sugeno模糊神经网络的欠驱动无人艇直线航迹跟踪控制[J]. 仪器仪表学报, 2015, 36(4): 863–870.

    DONG Z P, LIU T, WAN L, et al. Straight-path tracking control of underactuated USV based on Takagi-Sugeno fuzzy neural network[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 863–870 (in Chinese).
    [8] DO K D. Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267–278. doi: 10.1016/j.oceaneng.2015.10.038
    [9] 仲伟波, 罗炀, 卢道华, 等. 无人艇通讯导航控制系统设计与实现[J]. 中国造船, 2018, 59(1): 207–215. doi: 10.3969/j.issn.1000-4882.2018.01.020

    ZHONG W B, LUO Y, LU D H, et al. Design and implementation of communication navigation and control system for unmanned surface vehicle[J]. Shipbuilding of China, 2018, 59(1): 207–215 (in Chinese). doi: 10.3969/j.issn.1000-4882.2018.01.020
    [10] 田勇, 王丹, 彭周华, 等. 无人水面艇直线航迹跟踪控制器的设计与验证[J]. 大连海事大学学报, 2015, 41(4): 14–18.

    TIAN Y, WANG D, PENG Z H, et al. Design and validation of path tracking controller for USV along straight-lines[J]. Journal of Dalian Maritime University, 2015, 41(4): 14–18 (in Chinese).
    [11] 陈霄, 刘忠, 罗亚松, 等. 海洋环境下欠驱动无人艇航迹跟踪控制算法[J]. 哈尔滨工业大学学报, 2018, 50(10): 110–117. doi: 10.11918/j.issn.0367-6234.201709067

    CHEN X, LIU Z, LUO Y S, et al. Path tracking control algorithm for the underactuated USV in the marine environment[J]. Journal of Harbin Institute of Technology, 2018, 50(10): 110–117 (in Chinese). doi: 10.11918/j.issn.0367-6234.201709067
    [12] 祝镜, 王建华, 赵梦铠, 等. 关于无人水面艇路径跟踪优化控制仿真[J]. 计算机仿真, 2016, 33(6): 362–367. doi: 10.3969/j.issn.1006-9348.2016.06.081

    ZHU J, WANG J H, ZHAO M K, et al. Simulation of path following optimization control of unmanned surface vehicle[J]. Computer Simulation, 2016, 33(6): 362–367 (in Chinese). doi: 10.3969/j.issn.1006-9348.2016.06.081
    [13] 范云生, 郭晨, 赵永生, 等. 时变漂角下USV直线路径跟踪控制器设计与验证[J]. 仪器仪表学报, 2016, 37(11): 2514–2520. doi: 10.3969/j.issn.0254-3087.2016.11.014

    FAN Y S, GUO C, ZHAO Y S, et al. Design and verification of straight line path following controller for USV with time-varying drift angle[J]. Chinese Journal of Scientific Instrument, 2016, 37(11): 2514–2520 (in Chinese). doi: 10.3969/j.issn.0254-3087.2016.11.014
    [14] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 820–827. doi: 10.1109/TCST.2014.2338354
    [15] 林政, 吕霞付. 基于改进模糊算法的水面无人艇自主避障[J]. 计算机应用, 2019, 39(9): 2523–2528. doi: 10.11772/j.issn.1001-9081.2019020317

    LIN Z, LYU X F. Autonomous obstacle avoidance of unmanned surface vessel based on improved fuzzy algorithm[J]. Journal of Computer Applications, 2019, 39(9): 2523–2528 (in Chinese). doi: 10.11772/j.issn.1001-9081.2019020317
    [16] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1): 24–31. doi: 10.3969/j.issn.1673-8128.2007.01.004

    HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007(1): 24–31 (in Chinese). doi: 10.3969/j.issn.1673-8128.2007.01.004
    [17] 贾欣乐, 杨盐生. 船舶运动数学模型: 机理建模与辨识建模[M]. 大连: 大连海事大学出版社, 1999.

    JIA X L, YANG Y S. Mathematical model of ship motion: mechanism modeling and identification modeling[M]. Dalian: Dalian Maritime University Press, 1999 (in Chinese).
  • ZG1842_en.pdf
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  153
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-02-05
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回