留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于驾驶实践的无人船智能避碰决策方法

丁志国 张新宇 王程博 黎泉 安兰轩

丁志国, 张新宇, 王程博, 等. 基于驾驶实践的无人船智能避碰决策方法[J]. 中国舰船研究, 2021, 16(1): 96–104, 113 doi: 10.19693/j.issn.1673-3185.01781
引用本文: 丁志国, 张新宇, 王程博, 等. 基于驾驶实践的无人船智能避碰决策方法[J]. 中国舰船研究, 2021, 16(1): 96–104, 113 doi: 10.19693/j.issn.1673-3185.01781
DING Z G, ZHANG X Y, WANG C B, et al. Intelligent collision avoidance decision-making method for unmanned ships based on driving practice[J]. Chinese Journal of Ship Research, 2021, 16(1): 96–104, 113 doi: 10.19693/j.issn.1673-3185.01781
Citation: DING Z G, ZHANG X Y, WANG C B, et al. Intelligent collision avoidance decision-making method for unmanned ships based on driving practice[J]. Chinese Journal of Ship Research, 2021, 16(1): 96–104, 113 doi: 10.19693/j.issn.1673-3185.01781

基于驾驶实践的无人船智能避碰决策方法

doi: 10.19693/j.issn.1673-3185.01781
基金项目: 国家重点研发计划资助项目(2018YFB1601502)
详细信息
    作者简介:

    丁志国,男,1996年生,硕士生。研究方向:无人驾驶船舶智能避碰,交通流仿真。E-mail:dingzhiguo@dlmu.edu.cn

    张新宇,男,1978年生,博士,教授,博士生导师。研究方向:交通信息工程,组织优化调度,交通管理系统,无人驾驶船舶技术。E-mail:zhang.xinyu@sohu.com

    通信作者:

    张新宇

  • 中图分类号: U664.82;TP273.5

Intelligent collision avoidance decision-making method for unmanned ships based on driving practice

知识共享许可协议
基于驾驶实践的无人船智能避碰决策方法丁志国,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为实现沿海无人驾驶船舶自主航行,充分考虑无人驾驶船舶智能避碰决策的合理性和实时性后,提出并建立一种基于驾驶实践的无人船智能避碰决策方法。  方法  首先,以本体论为基础,设计无人驾驶船舶航行态势本体概念模型,并结合《国际海上避碰规则》及良好的船艺将船舶航行态势量化划分为12种会遇场景;然后,从驾驶实践的角度改进影响碰撞危险度因子的模糊隶属度函数,提出一种多元碰撞危险度评估模型,实现船舶碰撞危险度的精确计算;最后,以船舶避碰总路径最短为目标函数,提出一种基于驾驶员视角(BOP)的智能避碰决策模型,在船舶操纵性、舵角限幅等约束下求解最优避碰策略,并在典型的会遇场景下进行仿真实验。  结果  结果表明,该方法可以准确判断驾驶航行态势,给出合理的转向策略,实现典型会遇场景下的有效避碰。  结论  所做研究可为实现船舶自主航行提供理论基础和方法参考。
  • 图  1  无人驾驶船舶自主航行系统架构图

    Figure  1.  architecture diagram of autonomous navigation system of unmanned ship

    图  2  3种典型会遇场景示意图

    Figure  2.  Schematic diagram of three typical encounter scenarios

    图  3  船舶转向避碰行动方式示意图

    Figure  3.  Schematic diagram of ship steering and collision avoidance action mode

    图  4  BOP智能避碰决策模型流程图

    Figure  4.  Flow chart of BOP intelligent collision avoidance decision-making model

    图  5  船舶复航时机求解示意图

    Figure  5.  Schematic diagram of solving the timing of re-sailing

    图  6  船舶避碰仿真过程图

    Figure  6.  Ship collision avoidance simulation process diagram

    图  7  船舶避碰过程中航向舵角变化曲线

    Figure  7.  Course and rudder angle variation curve during collision avoidance

    表  1  航行态势理解与划分表

    Table  1.   Navigation situation understanding and division

    序号 目标船方位 会遇场景 舷角/q ΨtΨ0 VtV0 避让行动 避让责任
    1 船艏 DHO 0~π/8 7π/8~9π/8 任意 向左转向
    2 HO 15π/8~0 7π/8~9π/8 任意 向右转向 同等
    3 CR 15π/8~π/8 9π/8~13π/8 任意 向右转向 让路
    4 OT 13π/8~3π/8 Vt<V0 左转或右转 让路
    5 CR 3π/8~7π/8 任意 保向保速 直航
    6 右舷正横前 OT π/8~π/2 π~2π Vt<V0 向右转向 让路
    7 CR π~2π 任意 向右转向 让路
    8 右舷正横后 CR π/2~5π/8 3π/2-2π 任意 向左转向 让路
    9 船艉 OT 5π/8~11π/8 3π/2~ /2π Vt>V0 保向保速 直航
    10 左舷正横后 CR 11π/8~3π/2 0~π/2 任意 保向保速 直航
    11 左舷正横前 OT 3π/2~15π/8 0~π Vt<V0 向右转向 让路
    12 CR 0~π 任意 向右转向 让路
    下载: 导出CSV

    表  2  Mariner标准船型数据

    Table  2.   Coefficients in mathematical model of ship maneuvering motion of Mariner

    名称数值
    总长$ {L}_{\rm{oa}} $/m171.80
    垂线间长${L}_{\rm{bp}}$/m160.93
    型宽$ B $/m23.17
    设计吃水$ T $/m8.23
    排水量$ \nabla $/m318 541
    设计航速$ {U}_{0} $ /kn15
    舵角限幅$ \delta $/(°)35
    下载: 导出CSV

    表  3  船舶初始航行参数设置

    Table  3.   Ship's initial navigation state data

    船舶船位(λ/(°), φ/(°))航向Ψ/(°)航速/kn
    无人驾驶船舶(161.10,25.10)45°15
    动态目标船(TS1)(161.21,25.125)315°10
    动态目标船(TS2)(161.32,25.28)225°10
    动态目标船(TS3)(161.24,25.16)45°10
    下载: 导出CSV
  • [1] 陈国权. 船舶避碰自动化关键技术研究[D]. 大连: 大连海事大学, 2016.

    CHEN G Q. Research on key technologies for ship collision avoidance automation[D]. Dalian: Dalian Maritime University, 2016 (in Chinese).
    [2] PERERA L P, CARVALHO J P, SOARES C G. Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions[J]. Journal of Marine Science and Technology, 2011, 16(1): 84–99.
    [3] KEARON J. Computer programs for collision avoidance and traffic keeping[C]//Conference on Mathematical Aspects on Marine Traffic. London: Academic Press, 1977.
    [4] 王则胜, 施朝健. 基于改进的神经网络的船舶碰撞危险度的模型[J]. 中国航海, 2007(1): 65–67. doi: 10.3969/j.issn.1000-4653.2007.01.015

    WANG Z S, SHI C J. An improved neural network based model of collision risk index[J]. Navigation of China, 2007(1): 65–67 (in Chinese). doi: 10.3969/j.issn.1000-4653.2007.01.015
    [5] LI C Z, LI W, NING J. Calculation of ship collision risk index based on adaptive fuzzy neural network[C]//Proceedings of 2018 3rd International Conference on Modeling, Simulation and Applied Mathematics (MSAM). Shanghai: Science and Engineering Research Center, 2018: 223–227.
    [6] 汤国瑞, 谢新连, 潘伟. 复杂水域船舶智能避碰专家系统设计[J]. 船海工程, 2019, 48(3): 160–165. doi: 10.3963/j.issn.1671-7953.2019.03.037

    TANG G R, XIE X L, PAN W. Design of intelligent collision avoidance expert system for ships in complex waters[J]. Ship & Ocean Engineering, 2019, 48(3): 160–165 (in Chinese). doi: 10.3963/j.issn.1671-7953.2019.03.037
    [7] 刘冬冬, 史国友, 李伟峰, 等. 基于最短避碰距离和碰撞危险度的避碰决策支持[J]. 上海海事大学学报, 2018, 39(1): 13–18.

    LIU D D, SHI G Y, LI W F, et al. Decision support of collision avoidance based on shortest avoidance distance and collision risk[J]. Journal of Shanghai Maritime University, 2018, 39(1): 13–18 (in Chinese).
    [8] 胥文, 胡江强, 尹建川, 等. 基于模糊理论的船舶复合碰撞危险度计算[J]. 舰船科学技术, 2017, 39(7): 78–84. doi: 10.3404/j.issn.1672-7649.2017.07.016

    XU W, HU J Q, YIN J C, et al. Composite evaluation of ship collision risk index based on fuzzy theory[J]. Ship Science and Technology, 2017, 39(7): 78–84 (in Chinese). doi: 10.3404/j.issn.1672-7649.2017.07.016
    [9] 施建祥, 张笑嫣. 船舶碰撞危险度的避碰决策模型[J]. 珠江水运, 2018(18): 78–79.

    SHI J X, ZHANG X Y. Collision avoidance decision model of ship collision risk[J]. Pearl River Water Transport, 2018(18): 78–79 (in Chinese).
    [10] LYU H G, YIN Y. Fast path planning for autonomous ships in restricted waters[J]. Applied Sciences, 2018, 8(12): 2592.
    [11] LYU H G, YIN Y. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields[J]. The Journal of Navigation, 2019, 72(3): 588–608.
    [12] 林晓杰. 基于改进势场法的受限水域中船舶自动避碰模型研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    LIN X J. Model research on automatic collision avoidance of ships in confined waterways based on improved potential field method[D]. Harbin: Harbin Engineering University, 2015 (in Chinese).
    [13] 袁宇祺. 多目标下的船舶智能避碰方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    YUAN Y Q. Intelligent collision avoidance of surface vechiles under multi-objective[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
    [14] HE Y X, HUANG L W, XIONG Y, et al. The research of ship ACA actions at different stages on head-on situation based on Cri and COLREGS[J]. Journal of Coastal Research, 2015, 73(Supp 1): 735–740.
    [15] 王程博, 张新宇, 张加伟, 等. 未知环境中无人驾驶船舶智能避碰决策方法[J]. 中国舰船研究, 2018, 13(6): 72–77. doi: 10.19693/j.issn.1673-3185.01144

    WANG C B, ZHANG X Y, ZHANG J W, et al. Method for intelligent obstacle avoidance decision-making of unmanned vessel in unknown waters[J]. Chinese Journal of Ship Research, 2018, 13(6): 72–77 (in Chinese). doi: 10.19693/j.issn.1673-3185.01144
    [16] SHEN H Q, HASHIMOTO H, MATSUDA A, et al. Automatic collision avoidance of multiple ships based on deep Q-learning[J]. Applied Ocean Research, 2019, 86: 268–288.
    [17] 李丽娜, 陈国权, 李国定, 等. 船舶拟人智能避碰决策方法研究综述[J]. 航海, 2014(2): 42–49.

    LI L N, CHEN G Q, LI G D, et al. A review on PIDVCA system[J]. Navigation, 2014(2): 42–49 (in Chinese).
    [18] 耿新力. 城区不确定环境下无人驾驶车辆行为决策方法研究[D]. 合肥: 中国科学技术大学, 2017.

    GENG X L. Research on behavior decision-making approaches for autonomous vehicle in urban uncertainty environments[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese).
    [19] DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of marine traffic using domains and arenas[J]. The Journal of Navigation, 1980, 33(2): 215–222.
    [20] 苏开文. 船舶避碰专家系统的研究[D]. 大连: 大连海事大学, 2007.

    SU K W. A study on the expert system for ship collision avoidance[D]. Dalian: Dalian Maritime University, 2007 (in Chinese).
    [21] FOSSEN T I. Guidance and control of ocean vehicles[M]. Chichester, New York: Wiley, 1994.
    [22] 王鹏鲲, 陈国权, 李丽娜, 等. 船舶预测复航限制时间模型及算法验证[J]. 中国航海, 2016, 39(1): 55–59. doi: 10.3969/j.issn.1000-4653.2016.01.013

    WANG P K, CHEN G Q, LI L N, et al. Integrity verification of calculation model for forecasting recovery limited time of ship[J]. Navigation of China, 2016, 39(1): 55–59 (in Chinese). doi: 10.3969/j.issn.1000-4653.2016.01.013
  • 1781_en.pdf
    1781_en.pdf
    1781_en.pdf
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  196
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2020-12-08
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回