留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能船舶航行功能测试验证的方法体系

刘佳仑 杨帆 马枫 严新平

刘佳仑, 杨帆, 马枫, 等. 智能船舶航行功能测试验证的方法体系[J]. 中国舰船研究, 2021, 16(1): 45–50 doi: 10.19693/j.issn.1673-3185.01780
引用本文: 刘佳仑, 杨帆, 马枫, 等. 智能船舶航行功能测试验证的方法体系[J]. 中国舰船研究, 2021, 16(1): 45–50 doi: 10.19693/j.issn.1673-3185.01780
LIU J L, YANG F, MA F, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45–50 doi: 10.19693/j.issn.1673-3185.01780
Citation: LIU J L, YANG F, MA F, et al. Method system of navigation function test and verification for intelligent ship[J]. Chinese Journal of Ship Research, 2021, 16(1): 45–50 doi: 10.19693/j.issn.1673-3185.01780

智能船舶航行功能测试验证的方法体系

doi: 10.19693/j.issn.1673-3185.01780
基金项目: 国家重点研发计划资助项目(2018YFB1601505);智能船舶综合测试与验证研究资助项目(2018473);国家自然科学基金资助项目(51709217);湖北省自然科学基金资助项目(2018CFB640);海洋工程国家重点实验室(上海交通大学)开放课题资助项目(1707);中央高校基本科研业务费专项资助项目(2018IVA034, 2018IVB079)
详细信息
    作者简介:

    刘佳仑,男,1987年生,博士,副研究员。研究方向:智能船舶功能测试与验证,智能船舶运动控制,船舶操纵建模与仿真。E-mail:jialunliu@whut.edu.cn

    杨帆,男,1997年生,硕士生。研究方向:智能船舶功能测试与验证。E-mail:2965993117@qq.com

    马枫,男,1985年生,博士,副研究员,硕士生导师。研究方向:智能船舶感知增强,辅助驾驶决策,自主航行意识构建。E-mail:martin7wind@whut.edu.cn

    严新平,男,1959年生,博士,教授,博士生导师,中国工程院院士。研究方向:水路交通安全与智能技术。E-mail: xpyan@whut.edu.cn

    通信作者:

    严新平

  • 中图分类号: U666.16

Method system of navigation function test and verification for intelligent ship

知识共享许可协议
智能船舶航行功能测试验证的方法体系刘佳仑,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 智能船舶航行技术发展的核心在于构建从辅助决策到自主驾控的完整软硬件系统,实现人工驾驶到智能驾驶的演化,而核心技术的突破与软硬件系统的研发离不开完善的测试验证体系和健全的规范标准。对目前国内外智能船舶测试场现状进行综述,对以性能、能效、信息、智能为对象的智能船舶航行功能测试构想进行解析,最终提出以虚拟仿真为初试、模型测试为中试和实船验证为终试的智能船舶航行功能测试验证方法体系。
  • 图  1  莱茵河航行管委会提出的内河船舶智能等级划分

    Figure  1.  Classification of intelligent inland vessels proposed by Central Commission for the Navigation of the Rhine

    图  2  智能船舶航行功能测试对象分析

    Figure  2.  Analysis of functional testing object on navigation for intelligent ships

    图  3  智能船舶航行功能测试验证方法体系构成

    Figure  3.  System of test and verification method on navigation function for intelligent ships

  • [1] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807–817.

    YAN X P, LIU C G. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807–817 (in Chinese).
    [2] 吴青, 王乐, 刘佳仑. 自主水面货船研究现状与展望[J]. 智能系统学报, 2019, 14(1): 57–70.

    WU Q, WANG L, LIU J L. Research status and prospects of autonomous surface cargo ships[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 57–70 (in Chinese).
    [3] International Maritime Organization. IMO takes first steps to address autonomous ships[EB/OL]. [2018-05-25]. http://www.imo.org/en/MediaCentre/PressBriefings/Pages/08-MSC-99-MASS-scoping.aspx.
    [4] LI L, HUANG W L, LIU Y H, et al. Intelligence testing for autonomous vehicles: A new approach[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 158–166. doi: 10.1109/TIV.2016.2608003
    [5] LI L, LIN Y L, ZHENG N N, et al. Artificial intelligence test: a case study of intelligent vehicles[J]. Artificial Intelligence Review, 2018, 50(3): 441. doi: 10.1007/s10462-018-9631-5
    [6] LI L, WANG X, WANG K F, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. doi: 10.1126/scirobotics.aaw4106
    [7] SILVERAJAN B, OCAK M, NAGEL B. Cybersecurity attacks and defences for unmanned smart ships[C]//2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Halifax, NS, Canada: IEEE, 2018: 15–20.
    [8] MSC 99/INF. 13. Establishing international test area "Jaakonmeri" for autonomous vessels [R]. Finland: MSC, 2018.
    [9] MSC 100/5/2. Interim guidelines for MASS trials[R]. Norway and BIMCO: MSC.
    [10] MSC 100/5/3. Proposals for the development of interim guidelines for maritime autonomous surface ships (MASS) trials[R]. Republic of Korea,MSC.
    [11] 谢综文. 我国首个智能航运技术创新与综合实验基地启动[J]. 广东交通, 2018(3): 53.

    XIE Z W. China's first smart shipping technology innovation and comprehensive experimental base launched[J]. Transportation of Guangdong, 2018(3): 53 (in Chinese).
    [12] 贺辞. CCS《智能船舶规范》六大功能模块要求[J]. 中国船检, 2016(3): 84–85. doi: 10.3969/j.issn.1009-2005.2016.03.018

    HE C. Requirements of six functional modules for CCS "rules for intelligent ships"[J]. China Ship Survey, 2016(3): 84–85 (in Chinese). doi: 10.3969/j.issn.1009-2005.2016.03.018
    [13] 龙洋, 王猛. 动力定位船舶模糊解耦定速航行控制算法[J]. 中国舰船研究, 2019, 14(3): 152–157.

    LONG Y, WANG M. Fuzzy decoupling constant-velocity navigation control algorithm for dynamic positioning ship[J]. Chinese Journal of Ship Research, 2019, 14(3): 152–157 (in Chinese).
    [14] 曹诗杰, 曾凡明, 陈于涛. 无人水面艇航向航速协同控制方法[J]. 中国舰船研究, 2015, 10(6): 74–80. doi: 10.3969/j.issn.1673-3185.2015.06.011

    CAO S J, ZENG F M, CHEN Y T. The course and speed cooperative control method for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2015, 10(6): 74–80 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.06.011
    [15] 张显库, 韩旭. 船舶运输安全保障下的智能船舶运动控制策略[J]. 中国舰船研究, 2019, 14(增刊 1): 1–6.

    ZHANG X K, HAN X. The motion control strategy for intelligent ships based on ship transportation safeguard[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 1–6 (in Chinese).
    [16] 王程博, 张新宇, 张加伟, 等. 未知环境中无人驾驶船舶智能避碰决策方法[J]. 中国舰船研究, 2018, 13(6): 72–77. doi: 10.19693/j.issn.1673-3185.01144

    WANG C B, ZHANG X Y, ZHANG J W, et al. Method for intelligent obstacle avoidance decision-making of unmanned vessel in unknown waters[J]. Chinese Journal of Ship Research, 2018, 13(6): 72–77 (in Chinese). doi: 10.19693/j.issn.1673-3185.01144
  • 加载中
图(3)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  148
  • PDF下载量:  1123
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-22
  • 修回日期:  2020-03-18
  • 网络出版日期:  2021-01-26
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回