留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

搜索算法在无人艇航迹规划中的应用

路春晖 张博 付振楷 尹美琳 张嘉琪

路春晖, 张博, 付振楷, 等. 搜索算法在无人艇航迹规划中的应用[J]. 中国舰船研究, 2021, 16(1): 83–88 doi: 10.19693/j.issn.1673-3185.01604
引用本文: 路春晖, 张博, 付振楷, 等. 搜索算法在无人艇航迹规划中的应用[J]. 中国舰船研究, 2021, 16(1): 83–88 doi: 10.19693/j.issn.1673-3185.01604
LU C H, ZHANG B, FU Z K, et al. Application of search algorithms in unmanned surface vehicle track planning[J]. Chinese Journal of Ship Research, 2021, 16(1): 83–88 doi: 10.19693/j.issn.1673-3185.01604
Citation: LU C H, ZHANG B, FU Z K, et al. Application of search algorithms in unmanned surface vehicle track planning[J]. Chinese Journal of Ship Research, 2021, 16(1): 83–88 doi: 10.19693/j.issn.1673-3185.01604

搜索算法在无人艇航迹规划中的应用

doi: 10.19693/j.issn.1673-3185.01604
基金项目: 天津市科技兴海资助项目(KJXH2014-13)
详细信息
    作者简介:

    路春晖,男,1995年生,硕士生。研究方向:安全监测,自动化仪器。E-mail:1085848741@qq.com

    张嘉琪,男,1962年生,教授。研究方向:安全检验检测,自动化仪器。E-mail:zhangjqa@sina.com

    通信作者:

    张嘉琪

  • 中图分类号: U661.33

Application of search algorithms in unmanned surface vehicle track planning

知识共享许可协议
搜索算法在无人艇航迹规划中的应用路春晖,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了更加有效地利用无人艇(USV)执行复杂的海洋作业,需要可靠的航迹规划算法。针对现有路径规划算法研究,提出一种基于2D扫描思想的搜索扫描算法。  方法  首先,建立环境空间模型,在起点与终点之间存在障碍物的前提下,通过起点360°扫描获取周围障碍物信息,并确定子节点。然后,通过确定代价函数获取子节点,不断扫描最优子节点并更新下一代子节点以扫描到终点,最终确定规划路线。最后,使用LabView2017平台编写算法仿真软件并进行实验。  结果  结果表明,搜索扫描算法在规划路径上和蚁群算法相比生成的路径质量更高。  结论  搜索扫描算法减少了传统算法规划路径中结果非最优解的问题,能有效提高算法应用于二维空间路径规划时的可靠性。
  • 图  1  扫描算法最终路径图

    Figure  1.  Final path diagram of the scanning algorithm

    图  2  算法优化前后路径对比图

    Figure  2.  Path comparison before and after algorithm optimization

    图  3  规划次数与所用时间关系图

    Figure  3.  Relationship between planned times and used time

    图  4  路径长度收敛趋势图

    Figure  4.  Path length convergence trend

    图  5  仿真软件界面

    Figure  5.  Simulation software interface

    图  6  理工湖仿真实验

    Figure  6.  Science and technology lake simulation experiment

    图  7  两种算法在长距离下规划路径效果

    Figure  7.  Two algorithms plan path effects over long distances

    图  8  理工湖测试图

    Figure  8.  Science and technology lake test

    图  9  渤海湾测试图

    Figure  9.  Bohai bay test

  • [1] SONG R, LIU Y C, BUCKNALL R. A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment[J]. Ocean Engineering, 2017, 129: 301–317. doi: 10.1016/j.oceaneng.2016.11.009
    [2] 赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58–65. doi: 10.19693/j.issn.1673-3185.01028

    ZHAO R, XU J, XIANG X B, et al. A review of path planning and cooperative control for MAUV systems[J]. Chinese Journal of Ship Research, 2018, 13(6): 58–65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01028
    [3] MURPHY R R, STEIMLE E, GRIFFIN C, ET A L. Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane Wilma[J]. Journal of Field Robot, 2008, 25(3): 164–180. doi: 10.1002/rob.20235
    [4] 魏莹. VB环境下A*算法的实现[J]. 兰州工业高等专科学校学报, 2009, 16(3): 8–10.

    WEI Y. A* algorithm based on VB[J]. Journal of Lanzhou Polytechnic College, 2009, 16(3): 8–10 (in Chinese).
    [5] 潘海波. A*算法寻找路径[J]. 黑龙江科技信息, 2009(18): 21.

    PAN H B. A* algorithm searching for paths[J]. Heilongjiang Science and Technology Information, 2009(18): 21 (in Chinese).
    [6] 陆皖麟, 雷景森, 邵炎. 基于改进A*算法的移动机器人路径规划[J]. 兵器装备工程学报, 2019, 40(4): 197–201. doi: 10.11809/bqzbgcxb2019.04.048

    LU W L, LEI J S, SHAO Y. Path planning for mobile robot based on an improved A* algorithm[J]. Journal of Ordnance Equipment Engineering, 2019, 40(4): 197–201 (in Chinese). doi: 10.11809/bqzbgcxb2019.04.048
    [7] 余必秀, 初秀民, 柳晨光, 等. 基于改进A*算法的无人航道测量船路径规划[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1258–1264. doi: 10.13203/j.whugis20170239

    YU B X, CHU X M, LIU C G, et al. A path planning method for unmanned waterway survey ships based on improved A* algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1258–1264 (in Chinese). doi: 10.13203/j.whugis20170239
    [8] 杨超杰, 裴以建, 刘朋. 改进粒子群算法的三维空间路径规划研究[J]. 计算机工程与应用, 2019, 55(11): 117–122. doi: 10.3778/j.issn.1002-8331.1808-0245

    YANG C J, PEI Y J, LIU P. Research on three-dimensional space path planning based on improved particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2019, 55(11): 117–122 (in Chinese). doi: 10.3778/j.issn.1002-8331.1808-0245
    [9] 贾会群, 魏仲慧, 何昕, 等. 基于改进粒子群算法的路径规划[J]. 农业机械学报, 2018, 49(12): 371–377. doi: 10.6041/j.issn.1000-1298.2018.12.044

    JIA H Q, WEI Z H, HE X, et al. Path planning based on improved particle swarm optimization algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 371–377 (in Chinese). doi: 10.6041/j.issn.1000-1298.2018.12.044
    [10] 练青坡, 王宏健, 袁建亚, 等. 基于粒子群优化算法的USV集群协同避碰方法[J]. 系统工程与电子技术, 2019, 41(9): 2034–2040. doi: 10.3969/j.issn.1001-506X.2019.09.16

    LIAN Q P, WANG H J, YUAN J Y, et al. USV cluster collision avoidance based on particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2019, 41(9): 2034–2040 (in Chinese). doi: 10.3969/j.issn.1001-506X.2019.09.16
    [11] 薛彩霞, 袁伟, 俞孟蕻, 等. 遗传粒子群优化算法在船舶动力定位控制中的应用[J]. 中国舰船研究, 2016, 11(4): 111–115. doi: 10.3969/j.issn.1673-3185.2016.04.016

    XUE C X, YUAN W, YU M H, et al. Application of the genetic particle swarm optimization algorithm in dynamic positioning ship control[J]. Chinese Journal of Ship Research, 2016, 11(4): 111–115 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.04.016
    [12] 徐博, 张娇, 王超. 一种基于人工势场多AUV集群的实时避障方法[J]. 中国舰船研究, 2018, 13(6): 66–71. doi: 10.19693/j.issn.1673-3185.01326

    XU B, ZHANG J, WANG C. A real-time obstacle avoidance method for multi-AUV cluster based on artificial potential field[J]. Chinese Journal of Ship Research, 2018, 13(6): 66–71 (in Chinese). doi: 10.19693/j.issn.1673-3185.01326
    [13] 刘瑞轩, 张永林. 基于改进蚁群算法的多自主式水下机器人任务分配[J]. 中国舰船研究, 2018, 13(6): 107–112. doi: 10.19693/j.issn.1673-3185.01029

    LIU R X, ZHANG Y L. Task allocation of multiple autonomous underwater vehicles based on improved ant colony algorithm[J]. Chinese Journal of Ship Research, 2018, 13(6): 107–112 (in Chinese). doi: 10.19693/j.issn.1673-3185.01029
    [14] 史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J]. 农业机械学报, 2014, 45(6): 53–57. doi: 10.6041/j.issn.1000-1298.2014.06.009

    SHI E X, CHEN M M, LI J, et al. Research on method of global path-planning for mobile robot based on ant-colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 53–57 (in Chinese). doi: 10.6041/j.issn.1000-1298.2014.06.009
    [15] 薛飞. 基于无人船的路径规划与避障问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    XUE F. Research on path planning and obstacle avoidance based on unmanned ship[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [16] 刘建. 水面无人艇路径规划技术的研究[D]. 镇江: 江苏科技大学, 2014.

    LIU J. Research on path planning technology of unmanned water surface[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014 (in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  146
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07
  • 修回日期:  2019-09-03
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回