Stealth analysis and sensitivity calculation of ship air-intake grille
-
摘要:
目的 舰船进气格栅的几何参数众多,对所有几何参数开展雷达波隐身性优化的计算成本过大,为此,需掌握格栅雷达散射截面(RCS)灵敏度较大的几何参数序列。 方法 以某典型舰船进气格栅为研究对象,开展进气格栅参数化建模、电磁散射计算参数设定和计算方法研究,利用中心有限差分方法计算各几何参数对屏蔽效率的灵敏度。 结果 获取了各几何参数下的雷达波散射特性变化规律和进气格栅隐身优化的几何参数序列,验证了构建的舰船进气格栅隐身性分析及灵敏度计算方法的合理性和可行性。 结论 分析计算结果可应用于舰船进气格栅的雷达波隐身优化设计中。 Abstract:Objectives Since the geometric parameters of the ship air-intake grilles are numerous, the calculation cost of radar wave stealth performance optimizing for all parameters is too high, and the geometric parameter sequences with high Radar Cross Section(RCS) sensitivity need to be mastered. Methods In this paper, taking one typical air-intake grille of ship as the object, the parameterized modeling, the electromagnetic scattering calculation parameters and the electromagnetic scattering calculation method of the grille had been carried out. The sensitivity of each geometric parameter to shielding efficiency was calculated by using the central finite difference method. Results The variation law of radar scattering characteristics under different geometric parameters, and the geometric parameter sequence for stealth optimization of the air-intake grilles were obtained. Conclusions The stealth analysis and sensitivity calculation method constructed in this paper is reasonable and feasible, and can be widely used in the stealth optimization design of naval air-intake grille. -
Key words:
- air-intake grille /
- radar stealth /
- sensitivity /
- coupling scattering
-
表 1 进气格栅几何参数及初始值
Table 1. Geometric parameters and initial values of air-intake grille
参数 初始值 船体宽度B/m 1.5 船体高度H/m 2 开口长度L/m 1.5 开口宽度D/m 1.0 开口圆角半径R/m 0.2 叶片宽度P/m 0.1 叶片间距U/m 0.04 叶片与结构夹角α/(°) 30 表 2 不同格栅开口几何参数下的RCS统计结果
Table 2. RCS statistical results under different geometric parameters of grille
开口参数 σ/m2 电磁屏蔽效率/% 初始值 0.538 97.35 L=1.4 m 1.186 89.96 L=1.6 m 0.610 96.53 D=0.9 m 0.630 96.31 D=1.1 m 0.576 96.93 R=0.15 m 0.503 97.75 R=0.25 m 0.603 96.62 表 3 不同叶片几何参数下的RCS统计结果
Table 3. RCS statistical results under different geometric parameters of blade
开口参数 σ/m2 电磁屏蔽效率/% 初始值 0.538 97.35 P=0.09 m 0.601 96.64 P=0.11 m 0.642 96.17 U=0.03 m 0.627 96.35 U=0.05 m 1.581 85.44 α=25° 0.574 96.95 α=35° 0.824 94.09 表 4 不同叶片方向及遮挡的格栅RCS统计结果
Table 4. RCS statistical results with different blade direction and back cover of grille
参数 横向叶片 纵向叶片 无遮挡 有遮挡 无遮挡 有遮挡 σ/m2 0.538 2.259 0.444 0.306 电磁屏蔽效率/% 97.35 67.35 93.43 96.56 表 5 进气格栅各参数对屏蔽效率的灵敏度
Table 5. Sensitivity of air-intake grille parameters to shielding efficiency
几何参数 开口 叶片 L D R P U α 灵敏度 0.493 0.031 0.023 0.023 0.218 0.086 -
[1] Khan J, Duan W Y, Sherbaz S. Radar cross section prediction and reduction for naval ships[J]. Journal of Marine Science and Application, 2012, 11(2):191-199. doi: 10.1007/s11804-012-1122-5 [2] Chauhan P P S, Singh D. Through-the wall imaging (TWI)radar for detection, classification and identification of targets based on RCS[C]//Proceedings of 2015 National Conference on Recent Advances in Electronics & Computer Engineering. Roorkee, India: IEEE, 2015: 216-221. http://www.researchgate.net/publication/307800596_Through-the_wall_imaging_TWI_radar_for_detection_classification_and_identification_of_targets_based_on_RCS [3] 杜晓佳, 崔玫.初步设计阶段桅杆外形的隐身性评估与改进[J].中国舰船研究, 2016, 11(2):127-132. doi: 10.3969/j.issn.1673-3185.2016.02.018Du X J, Cui M. Stealth evaluation and improvement of mast configuration in the preliminary design stage[J]. Chinese Journal of Ship Research, 2016, 11(2):127-132(in Chinese). doi: 10.3969/j.issn.1673-3185.2016.02.018 [4] 桑建华.飞行器隐身技术[M].北京:航空工业出版社, 2013.Sang J H. Low-observable technologies of aircraft[M]. Beijing:Aviation Industry Press, 2013(in Chinese). [5] 张乐.飞翼布局耦合进排气的气动与隐身综合设计研究[D].西安: 西北工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10699-1017803608.htmZhang L. Research on integrated design of aerodynamic and stealthy performance with intake and exhaust for flying-wing layout[D]. Xi'an: Northwestern Polytechnical University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10699-1017803608.htm [6] 张乐, 周洲, 许晓平.进气道进口格栅电磁散射特性及试验验证[J].南京航空航天大学学报, 2017, 49(3):361-369. http://d.old.wanfangdata.com.cn/Periodical/njhkht201703008Zhang L, Zhou Z, Xu X P. Electromagnetic scattering characteristics and experimental verification of inlet grille[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(3):361-369(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njhkht201703008 [7] Engheta N, Murphy W D, Rokhlin V, et al. The fast multipole method(FMM) for electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6):634-641. doi: 10.1109/8.144597 [8] 邱飞力.基于灵敏度分析的铝合金车体模型修正研究[D].成都: 西南交通大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10613-1017298505.htmQiu F L. The research of aluminum alloy car body model updating base on sensitivity analysis[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10613-1017298505.htm [9] Saltelli A, Tarantola S, Campolongo F, et al. Sensitivity analysis in practice:a guide to assessing scientific models[M]. Hoboken, NJ:John Wiley & Sons, Ltd., 2004. [10] Young T M. Fuel sensitivity analyses for jet and piston-propeller airplanes[C]//Proceedings of the 6th AIAA Aviation Technology, Integration and Operations Conference. Wichita, Kansas: AIAA, 2006. http://www.researchgate.net/publication/245430751_Fuel-Sensitivity_Analyses_for_Jet_and_Piston-Propeller_Airplanes -
2019-6-81_en.pdf
-