留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水空跨介质航行器斜出水过程数值仿真

谭骏怡 胡俊华 陈国明 杨健 葛阳

谭骏怡, 胡俊华, 陈国明, 杨健, 葛阳. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104-121. doi: 10.19693/j.issn.1673-3185.01519
引用本文: 谭骏怡, 胡俊华, 陈国明, 杨健, 葛阳. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104-121. doi: 10.19693/j.issn.1673-3185.01519
Tan Junyi, Hu Junhua, Chen Guoming, Yang Jian, Ge Yang. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104-121. doi: 10.19693/j.issn.1673-3185.01519
Citation: Tan Junyi, Hu Junhua, Chen Guoming, Yang Jian, Ge Yang. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104-121. doi: 10.19693/j.issn.1673-3185.01519

水空跨介质航行器斜出水过程数值仿真

doi: 10.19693/j.issn.1673-3185.01519
基金项目: 

国家自然科学基金资助项目面上项目 51779263

详细信息
    作者简介:

    谭骏怡, 男, 1995年生, 硕士生。研究方向:跨介质CFD流体仿真技术研究。E-mail:181490408959@163.com

    胡俊华, 男, 1980年生, 博士, 副教授。研究方向:跨介质关键技术研究。E-mail:515464004@qq.com

    通信作者:

    胡俊华

  • 中图分类号: U661.1

Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle

知识共享许可协议
水空跨介质航行器斜出水过程数值仿真谭骏怡,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  水空跨介质航行器(TMAUV)的斜出水过程是一个强非线性、非定常、流场变化剧烈的过程。基于一种可变体的TMAUV的水下构型,利用CFD流体仿真软件,对该构型在典型工况下的出水过程进行数值仿真。  方法  分析航行器在此过程中不同阶段的流场变化特性及其载荷的分布,比较航行器以不同的俯仰角和攻角出水时,在2个典型位置的流体速度场分布和航行器所受流体作用力的特性。  结果  结果表明,航行器倾斜跨越水空界面时两侧的流场和载荷会出现不对称的剧烈变化,俯仰角越大,在水下部分流场受动范围越小,跨越出水部分受影响越大;与零攻角出水相比,航行器带攻角倾斜出水会导致表面所受流体作用力出现高频率、大幅度的反向震荡,影响出水的稳定性。  结论  研究结果可为研究潜射导弹出水、船舶航行、潜艇跨介质等问题提供研究思路和理论参考。
  • 图  1  水空跨介质航行器出水起飞过程示意图

    Figure  1.  Schematic diagram of TMAUV in take-off and water-exit process

    图  2  水空跨介质航行器三维几何构型

    Figure  2.  Three-dimensional geometric model of TMAUV

    图  3  水空跨介质航行器外形参数及二维模型

    Figure  3.  Geometric parameters and two-dimensional model of TMAUV

    图  4  水空跨介质航行器出水动力学模型位置姿态仿真

    Figure  4.  Position and attitude simulation of dynamic model of TMAUV in water-exit process

    图  5  出水位置姿态的理论计算与流体仿真结果对比

    Figure  5.  Results comparisons of theoretical calculation and fluid simulation of position and attitude in water-exit process

    图  6  位移变化曲线

    Figure  6.  Displacement curves

    图  7  俯仰角度变化曲线

    Figure  7.  Variation curves of pitch angle

    图  8  出水过程计算域示意图

    Figure  8.  Computational domain diagram of water-exit process

    图  9  计算结果残差收敛曲线

    Figure  9.  Residual convergence curves of calculated result

    图  10  出水过程气、液两相分布

    Figure  10.  Gas-liquid two-phase distribution of water-exit process

    图  11  出水过程流场速度云图及流线图分布

    Figure  11.  Velocity contours and streamlines of flow field in water-exit process

    图  12  出水过程流场压力云图及流体作用力曲线

    Figure  12.  Pressure contours and hydrodynamic force curves of flow field in water-exit process

    图  13  出水过程中轴向和径向受力时间历程曲线

    Figure  13.  The time history curves of axial and radial force in water-exit process

    图  14  不同俯仰角出水气、液两相分布云图

    Figure  14.  Gas-liquid two-phase distribution contours of water-exit process at different pitch angles

    图  15  不同俯仰角出水流场速度流线图(位置1)

    Figure  15.  Velocity streamlines of flow field in water-exit process at different pitch angles (position 1)

    图  16  不同俯仰角出水流场速度流线图(位置2)

    Figure  16.  Velocity streamlines of flow field in water-exit process at different pitch angles (position 2)

    图  17  不同俯仰角出水流体作用力曲线(位置1)

    Figure  17.  Hydrodynamic force curves of vehicle in water-exit process at different pitch angles (position 1)

    图  18  不同俯仰角出水的流体作用力曲线(位置2)

    Figure  18.  Hydrodynamic force curves of vehicle in water-exit process at different pitch angles (position 2)

    图  19  不同攻角出水气、液两相分布云图

    Figure  19.  Gas-liquid two-phase distribution contours of vehicle in water-exit process at different attack angles

    图  20  不同攻角出水流场速度流线图(位置1)

    Figure  20.  Velocity streamlines of flow field in water-exit process at different attack angles (position 1)

    图  21  不同攻角出水流场速度流线图(位置2)

    Figure  21.  Velocity streamlines of flow field in water-exit process at different attack angles (position 2)

    图  22  不同攻角出水的流体作用力曲线(位置1)

    Figure  22.  Hydrodynamic force curves of vehicle in water-exit process at different attack angles (position 1)

    图  23  不同攻角出水的流体作用力曲线(位置2)

    Figure  23.  Hydrodynamic force curves of vehicle in water-exit process at different attack angles (position 2)

  • [1] Qi D, Feng J F, Liu A, et al. Overview on the development and key technologies of water-air UAV[C]//Proceedings of the 2nd International Conference on Control, Automation and Robotics(ICCAR). Hong Kong, China: IEEE, 2016: 213-218.
    [2] Hu J H, Xu B W, Feng J F, et al. Research on its water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering, 2017, 31(2):202-209. doi: 10.1007/s13344-017-0024-3
    [3] 武奇刚.回转体出水过程的自由面变形和流体载荷变化研究[D].哈尔滨: 哈尔滨工程大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10217-1018081964.htm

    Wu Q G. Study on the deformation of free surface and the variation of fluid loading during water exit of a revolving body[D]. Harbin: Harbin Engineering University, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1018081964.htm
    [4] 廖剑晖, 由小川, 吕海波, 等.发展时变附加质量方法模拟飞行器出水过程[J].工程力学, 2012, 29(4):202-209, 223. http://www.cqvip.com/QK/95324X/201204/41480112.html

    Liao J H, You X C, Lü H B, et al. Development of a time-varying added mass method in the simulations of the water-exit process of underwater vehicles[J]. Engineering Mechanics, 2012, 29(4):202-209, 223(in Chinese). http://www.cqvip.com/QK/95324X/201204/41480112.html
    [5] 姚熊亮, 张成, 杨衡, 等.弹体出水引起的非稳态流场数值计算方法[J].哈尔滨工程大学学报, 2012, 33(6):677-683. doi: 10.3969/j.issn.1006-7043.201105079

    Yao X L, Zhang C, Yang H, et al. Numerical calculation method for the unsteady flow field induced by missiles flying out of the water surface[J]. Journal of Harbin Engineering University, 2012, 33(6):677-683(in Chinese). doi: 10.3969/j.issn.1006-7043.201105079
    [6] 孙士丽, 孙义龙, 胡竞中, 等.圆柱体出水运动的自由面效应及水冢现象分析[J].计算物理, 2013, 30(2):187-193. doi: 10.3969/j.issn.1001-246X.2013.02.004

    Sun S L, Sun Y L, Hu J Z, et al. Free surface effect and spike of a cylinder piercing water surface[J]. Chinese Journal of Computational Physics, 2013, 30(2):187-193(in Chinese). doi: 10.3969/j.issn.1001-246X.2013.02.004
    [7] 李体方, 张志峰.海浪作用下的水下弹道数学模型[J].弹道学报, 1999, 11(3):47-51. http://www.cnki.com.cn/Article/CJFDTotal-DDXB199903008.htm

    Li T F, Zhang Z F. The emulation development for the motion of submerging missile under wave force[J]. Journal of Ballistics, 1999, 11(3):47-51(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DDXB199903008.htm
    [8] 胡俊辉.水下垂直发射的航行体在出水过程中超空泡的形成、溃灭及其与自由面相互作用的水动力学机理研究[D].杭州: 浙江理工大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2551613

    Hu J H. The research of hydrodynamic mechanism of formation collapse and interaction between free surface of surface of supercavitation in the process of water exit of a vertically launched underwater vehicle[D]. Hangzhou: Zhejiang Sci-Tech University, 2013(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2551613
    [9] 王一伟, 黄晨光, 杜特专, 等.航行体有攻角出水全过程数值模拟[J].水动力学研究与进展(A辑), 2011, 26(1):48-57. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz201101007

    Wang Y W, Huang C G, Du T Z, et al. Numerical simulation of a submerged body exiting from water with an attack angle[J]. Chinese Journal of Hydrodynamics (Ser. A), 2011, 26(1):48-57(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz201101007
    [10] 邹星.结构物出水过程的数值模拟[D].大连: 大连理工大学, 2013. http://d.wanfangdata.com.cn/Thesis/Y2416354

    Zou X. Numerical simulation of the water exiting process of structure[D]. Dalian: Dalian University of Technology, 2013(in Chinese). http://d.wanfangdata.com.cn/Thesis/Y2416354
    [11] 彭立兵.细长体出水动力学的实验研究及数值模拟[D].杭州: 浙江理工大学, 2014. http://www.cnki.com.cn/Article/CJFDTotal-LTLC201502005.htm

    Peng L B. Experimental and numerical study on hydrodynamic characteristics in water exit of slender body[D]. Hangzhou: Zhejiang Sci-Tech University, 2014(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-LTLC201502005.htm
    [12] 王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004:11-12.

    Wang F J. Computational fluid dynamics analysisprinciple and application of CFD software[M]. Beijing:Tsinghua University Press, 2004:11-12(in Chinese).
    [13] 李永利.变结构航行器水空跨越动力学模型运动特性研究[D].西安: 空军工程大学, 2016. http://d.wanfangdata.com.cn/Periodical/jsjfz201511024

    Li Y L. Study on the dynamic characteristics of variable structure vehicle spanning between water and air[D]. Xi'an: Air Force Engineering University, 2016(in Chinese). http://d.wanfangdata.com.cn/Periodical/jsjfz201511024
    [14] 陆博谦.运动物体与两相界面相互作用的动力学研究[D].合肥: 中国科学技术大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10358-1017193101.htm

    Lu B Q. Impact dynamics of moving objects onto two-phase interface[D]. Hefei: University of Science and Technology of China, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10358-1017193101.htm
    [15] 张佳强.潜-飞两栖导弹动力学特性研究[D].西安: 空军工程大学, 2013.

    Zhang J Q. Study on dynamic characteristics of submarine-flying amphibious missile[D]. Xi'an: Air Force Engineering University, 2013(in Chinese).
  • 加载中
图(23)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  237
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 网络出版日期:  2019-11-11
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回