留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计

段菲 张利军 陈鸽 姜海宁 张琪

段菲, 张利军, 陈鸽, 姜海宁, 张琪. 基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计[J]. 中国舰船研究, 2017, 12(6): 66-72. doi: 10.3969/j.issn.1673-3185.2017.06.010
引用本文: 段菲, 张利军, 陈鸽, 姜海宁, 张琪. 基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计[J]. 中国舰船研究, 2017, 12(6): 66-72. doi: 10.3969/j.issn.1673-3185.2017.06.010
Fei DUAN, Lijun ZHANG, Ge CHEN, Haining JIANG, Qi ZHANG. Polar vessel hullform design based on the multi-objective optimization NSGA Ⅱ[J]. Chinese Journal of Ship Research, 2017, 12(6): 66-72. doi: 10.3969/j.issn.1673-3185.2017.06.010
Citation: Fei DUAN, Lijun ZHANG, Ge CHEN, Haining JIANG, Qi ZHANG. Polar vessel hullform design based on the multi-objective optimization NSGA Ⅱ[J]. Chinese Journal of Ship Research, 2017, 12(6): 66-72. doi: 10.3969/j.issn.1673-3185.2017.06.010

基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计

doi: 10.3969/j.issn.1673-3185.2017.06.010
详细信息
    作者简介:

    张利军, 男, 1977年生, 博士, 高级工程师

    陈鸽, 男, 1983年生, 硕士, 工程师

    通信作者:

    段菲(通信作者), 女, 1990年生, 硕士, 助理工程师

  • 中图分类号: U661.31

Polar vessel hullform design based on the multi-objective optimization NSGA Ⅱ

知识共享许可协议
基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计段菲,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  随着北极丰富油气资源的不断开采,需要大量满足极地航行要求的船舶。  方法  将非支配排序遗传算法(NSGA Ⅱ)应用于船体型线优化设计,提出极地船舶多目标优化方法。以船舶无冰静水阻力以及冰区航行阻力为优化目标,通过极地船舶排水量以及船舶能效设计指数EEDI两项标准进行船型筛选,快速实现满足冰区船舶装载量与EEDI排放要求的船型优化。以常规6.5万吨穿梭油轮为研究对象,采用全参数化建模方式,通过极地船舶多目标优化方法分别对3种不同艏部形式的船型进行优化,  结果  优化后的船型均满足冰区IA级航行要求,其中无冰静水阻力最大减小约12.94%,冰区最小推进功率最大减小约27.36%,  结论  有效验证了基于NSGA Ⅱ的极地船舶多目标优化方法的可行性与合理性。
  • 图  1  拥挤度概念示意

    Figure  1.  Schematic diagram of congestion

    图  2  基于NSGA Ⅱ算法极地船舶多目标优化方法流程图

    Figure  2.  Flow chart of multi-objective optimization of polar vessel based on NSGA Ⅱ

    图  3  船舶主尺度及主要特征参数

    Figure  3.  The dimensions and main parameters of the ship

    图  4  全参数化建模

    Figure  4.  Fully parametric modeling

    图  5  常规6.5万吨穿梭油轮三维模型

    Figure  5.  Model of conventional 65 000 t shuttle tanker

    图  6  不同艏部形式最优船型三维模型

    Figure  6.  Model of optimal polar vessel hull for different bow types

    图  7  3种艏部船型横剖线对比图

    Figure  7.  Section lines of optimal polar vessel hull for different bow types

    图  8  不同艏部形式最优船型波形图(D=12.5 m,V=14.5 kn)

    Figure  8.  Waveforms of optimal polar vessel hull for different bow types

    图  9  不同艏部形式最优船型艏艉压力分布

    Figure  9.  Pressure distribution of optimal polar vessel hull for different bow types

    表  1  不同冰级船舶钢重量增加百分比

    Table  1.   Steel weight increase for different ice classes

    Ice classesSteel weight increase/%
    IC2
    IB4
    IA6
    IA Supper8
    下载: 导出CSV

    表  2  各船级社冰级符号与FSICR对应关系[13]

    Table  2.   Corresponding relations between FSICR and different ice classes of each classification society

    Ice classes(FSICR)h0/mABSBVCCSDNVGLLRNKRINARMRSIACS
    IA Super1.0IAAIASB1*ICE-1A*E41ASIA SuperIASLU5PC6
    IA0.8IAIAB1ICE-1AE31AIAIALU4PC7
    IB0.6IBIBB2ICE-1BE21BIBIBLU3-
    IC0.4ICICB3ICE-1CE11CICICLU2-
    下载: 导出CSV

    表  3  常规6.5万吨穿梭油轮主尺度及各参数表

    Table  3.   Main dimensions and parameters of conventional 65 000 t shuttle tanker

    参数数值
    总长/m216.00
    垂线间长/m205.00
    船宽/m36.00
    型深/m19.20
    设计吃水/m12.50
    满载吃水/m13.50
    载重(13.50 m)/tApprox. 65 000
    满载吃水处浮心位置/%+2.37%
    设计航速/kn14.5
    最大主机功率/kW10 200
    下载: 导出CSV

    表  4  常规6.5万吨及3型极地6.5万吨模型各目标函数值对比表

    Table  4.   Comparison of each objective function of conventional 6.5×104 t and three optimal polar vessels

    Ship model with different
    bow type
    Volume/m3Residual resistance
    coefficient Cr
    Frictional
    resistance
    coefficient Cf
    Total
    resistance
    Rt /kN
    Effective
    power Pe/kW
    Longitudinal
    center of
    buoyancy from
    midship/%
    The angle of
    the waterline at
    B/4 α(/°)
    The rake of the bow
    at B/4 φ2 /(°)
    Length of the bow
    LBOW/m
    Area of the
    waterline of the
    bow Awf/m2
    Required engine
    output for ice
    classes IA Pmin/kW
    EEDI/
    (g·(t·n mile)-1
    Fig. 6(a)79 9900.544 7×1032.489×103585.464 366.8+2.2932.650.6401 008.8611 9735.41
    Fig. 6(b)79 9620.575 7×1032.483×103594.654 435.4+2.1731.553.0371 001.1911 6835.28
    Fig. 6(c)80 045.10.613 3×1032.581×103605.764 518.2+2.9027.790.0601 814.4010 2064.63
    Conventional 6.5×104 t model79 024.40.838 5×1032.544×103672.475 015.8+2.3738.257.0421 081.0814 0506.32
    下载: 导出CSV
  • [1] MARKOV N E, SUZUKI K. Hull form optimization by shift and deformation of ship sections[J]. Journal of Ship Research, 2001, 45(2):197-204. https://ynu.pure.elsevier.com/en/publications/hull-form-optimization-by-shift-and-deformation-of-ship-sections
    [2] SAHA G K, SUZUKI K, KAI H. Hydrodynamic optimization of ship hull forms in shallow water[J]. Journal of Marine Science and Technology, 2004, 9(2):51-62. doi: 10.1007/s00773-003-0173-3
    [3] SUZUKI K, KAI H, KASHIWABARA S. Studies on the optimization of stern hull form based on a potential flow solver[J]. Journal of Marine Science and Technology, 2005, 10(2):61-69. doi: 10.1007/s00773-005-0198-x
    [4] ABT C, HARRIES S. A new approach to integration of CAD and CFD for naval architects[C]//6th International Conference on Computer Applications and Information Technology in the Maritime Industries. Cortona:[s.n.], 2007.
    [5] ABT C, HARRIES S, HEIMANN J, et al. From redesign to optimal hull lines by means of parametric modeling[C]//2nd International Euro Conference on Computer and IT Applications in the Maritime Industries. Hamburg, Germany, 2003.
    [6] HARRIES S, ABT C. Formal hydrodynamic optimization of a fast monohull on the basis of parametric hull design[C]//5th International Conference on Fast Sea Transportation. Seattle, Washington, USA:The Society of Naval Architects & Marine Engineers, 1999.
    [7] HARRIES S, TILLIG F, WILKEN M, et al. An integrated approach for simulation in the early ship design of a tanker[C]//10th International Conference on Computer Applications and Information Technology in the Maritime Industries. Berlin, German, 2011.
    [8] KIM H. Multi-objective optimization for ship hull form design[D]. Fairfax, VA:George Mason University, 2009. http://mars.gmu.edu/handle/1920/5620
    [9] TAHARA Y, TOHYAMA S, KATSUI T. CFD-based multi-objective optimization method for ship design[J]. International Journal for Numerical Methods in Fluids, 2006, 52(5):499-527. doi: 10.1002/(ISSN)1097-0363
    [10] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[C]//Proceedings of the 6th International Conference on Parallel Problem Solving from Nature Vi. Paris, France:Springer, 2000:849-858.
    [11] SRINIVAS N, DEB K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3):221-248.
    [12] Finnish-Swedish ice class rules:bulletin No. 13/1.10.2002[S]. Finnish Maritime Administration, 2002.
    [13] IACS. Requirements concerning polar class[S]. IACS, 2006.
    [14] MEPC. 2014 Guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships as amended:MEPC 66/21/Add.1[S]. MEPC, 2014.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  104
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-23
  • 网络出版日期:  2017-11-28
  • 刊出日期:  2017-12-08

目录

    /

    返回文章
    返回