Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis
-
摘要:
目的 对船舶舱室噪声阻尼控制进行布置优化研究,以提高阻尼减振降噪效果和降低阻尼重量。 方法 首先,基于SEA理论,对声腔子系统的A计权声压级关于子系统阻尼损耗因子的一阶灵敏度进行理论推导与数值分析。同时,提出阻尼材料的布置数学优化模型并设计优化程序,运用MATLAB对VA One进行二次开发,建立舱室噪声阻尼控制布置优化系统。然后,在此基础上,将阻尼敷设分为5个区域,每个区域的阻尼厚度比为优化变量,以阻尼涂层的总重量为目标函数,以目标舱室的A计权声压级为约束条件,建立实船SEA优化模型并进行布置优化数值研究。 结果 研究结果表明,通过优化程序计算可以得到各区域阻尼敷设的最佳厚度,优化后的阻尼重量可减轻60.4%,有效提高了单位重量阻尼的降噪效果。 结论 该研究成功解决了舱室阻尼降噪的阻尼敷设位置和厚度的选择难题,为阻尼的声学设计提供了可靠的分析方法和指导。 Abstract: An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA) method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design. -
表 1 舱室的特征参数
Table 1. The characteristic parameters of a single cabin
尺度 板子系统 上/下面板(6/7, 11/12) 左/右侧板(4/5, 9/10) 前/后壁板(3/2, 2/8) 长/m 9 9 - 宽/m 6 - 6 高/m - 3 3 板厚/m 0.003 0.003 0.003 表 2 聚氨酯和环氧树脂属性[17]
Table 2. The properties of polyurethane and epoxy
涂料 密度[ρ]/(kg·m-3) 泊松比[μ] 剪切模量E/ MPa 内损耗因子[η] 聚氨酯 1 100 0.48 16.6 1.1 环氧树脂 1 500 0.48 1 182 0.1 表 3 阻尼区域面积与底板厚度
Table 3. Damping area and plate's thickness
阻尼敷设区域M 1 2 3 4 5 面积/m2 24.000 18.452 20.544 4.368 4.200 厚度/m 0.006 0.006 0.006 0.004 0.004 -
[1] 文功启. 高速船结构噪声传播及其阻尼被动控制的研究[D]. 武汉: 武汉理工大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10497-2002112661.htmWEN G Q. Research of the propagation of the struc-ture-borne noise in high-speed ship and the inactivenoise controlling by damping treatments[D]. Wuhan:Wuhan University of Technology, 2002(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10497-2002112661.htm [2] 于大鹏, 赵德有, 汪玉.船舶声学建模和阻尼结构对舱室噪声影响研究[J].船舶力学, 2010, 14(5):539-548. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201005013.htmYU D P, ZHAO D Y, WANG Y. Influence of dampedmaterial and the ship model of acoustic on the ship cab-in noise[J]. Journal of Ship Mechanics, 2010, 14(5):539-548(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201005013.htm [3] 蔡旭龙. AHTS的舱室噪声预报及控制研究[D]. 广州: 华南理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10561-1016771483.htmCAI X L. Study on the cabin noise in AHTS about theprediction and control[D]. Guangzhou:South ChinaUniversity of Technology, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-1016771483.htm [4] 林永水. 钢铝混合结构高速船声振传递分析与控制研究[D]. 武汉: 武汉理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10497-1011105179.htmLIN Y S. Research on vibration and noise transmissionand control for steel-aluminum mixed structurehigh-speed ship[D]. Wuhan:Wuhan University ofTechnology, 2011(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10497-1011105179.htm [5] 范明伟. 高速船舱室噪声的统计能量分析与降噪优化研究[D]. 武汉: 武汉理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10497-1012405014.htmFAN M W. Prediction and optimization of cabin noiseof high-speed ship based on statistical energy analysismethod[D]. Wuhan:Wuhan University of Technolo-gy, 2012(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10497-1012405014.htm [6] LYON R H, DEJONG R G. Theory and application ofstatistical energy analysis[M]. 2nd ed. London:Butter-worth-Heineman, 1995:3021. [7] SHORTER P J, LANGLEY R S. Vibro-acoustic analy-sis of complex systems[J]. Journal of Sound and Vibra-tion, 2005, 288(3):669-699. doi: 10.1016/j.jsv.2005.07.010 [8] JENSEN J J. Calculation of structureborne noise trans-mission in ships using the"statistical energy analysis"approach[C]/Proceedings of International Symposiumon Shipboard Acoustics. Noordwijkerhout:British ShipResearch Association, 1976:303. [9] IRIE Y, NAKAMURA T. Prediction of structure bornesound transmission using statistical energy analysis[J]. Bulletin of the Marine Engineering Society in Ja-pan, 1985(13):60-70. [10] HYNNÁ P, KLINGE P, VUOKSINEN J. Predictionof structure-borne sound transmission in large weldedship structures using statistical energy analysis[J].Journal of Sound and Vibration, 1995, 180(4):583-607. doi: 10.1006/jsvi.1995.0101 [11] 郦茜, 吴卫国.基于AutoSEA的高速船静噪声预报与控制[J].中国舰船研究, 2008, 3(1):28-30. http://www.ship-research.com/CN/abstract/abstract741.shtmlLI Q, WU W G. Prediction and control of noise basedon AutoSEA for high-speed vessels[J]. Chinese Jour-nal of Ship Research, 2008, 3(1):28-30(in Chi-nese). http://www.ship-research.com/CN/abstract/abstract741.shtml [12] 邱斌, 吴卫国, 刘恺.高速船全频段舱室噪声仿真预报[J].中国舰船研究, 2011, 6(6):49-53. http://www.ship-research.com/CN/abstract/abstract5.shtmlQIU B, WU W G, LIU K. Full spectrum simulationprediction of high-speed vessel cabin noise[J]. Chi-nese Journal of Ship Research, 2011, 6(6):49-53(in Chinese). http://www.ship-research.com/CN/abstract/abstract5.shtml [13] CHAVAN A T, MANIK D N. Sensitivity analysis ofvibro-acoustic systems in statistical energy analysisframework[J]. Structural and Multidisciplinary Opti-mization, 2010, 40:283-306. doi: 10.1007/s00158-009-0362-8 [14] CREMER L, HECKL M, PETERSSON B A T. Struc-ture-borne sound:structural vibrations and sound ra-diation at audio frequencies[M]. Berlin: Spring-er-Verlag, 2005. [15] 唐焕文, 秦学志.实用最优化方法[M]. 3版.大连:大连理工大学出版社, 2004.TANG H W, QIN X Z. Practical methods of optimiza-tion[M]. 3rd ed. Dalian:Dalian University of Tech-nology Press, 2004(in Chinese). [16] 刘东晖, 黄微波, 杨宇润, 等. T54/T60阻尼涂料在舰船减振降噪工程中的应用[J].船舶, 1997(4):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ199704012.htmLIU D H, HUANG W B, YANG Y R, et al. Contribu-tions of T54/T6O damping coatings to noise and vibra-tion reduction for ships[J]. Ship & Boat, 1997(4):40-46(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ199704012.htm [17] WANG B Z, HUANG W B, HUANG B C, et al.Damping properties of polyurethane/epoxy resin com-posites[J]. China Synthtic Rubber Industry, 2004, 27(5):323-323. [18] SHORTER P J. Wave propagation and damping in lin-ear viscoelastic laminates[J]. Journal of the Acousti-cal Society of America, 2004, 115(5):1917-1925. doi: 10.1121/1.1689342 -