Development of control system in abdominal operating ROV
-
摘要:
目的 针对无人水下机器人(UUV)的回收任务要求,研制开发一台新式腹部作业型水下遥控机器人(ROV)。腹部作业型ROV不同于一般依赖机械手作业的传统ROV,其通过腹部作业机构完成与UUV的水下对接及回收。 方法 介绍腹部作业型ROV的系统组成及原理,提出一种以一体化工业加固计算机为水面监控单元,PC104嵌入式工业控制计算机为水下主控单元,各驱动板为驱动单元的控制系统架构。同时建立腹部作业型ROV的动力学模型,并设计水平面定向控制的H∞鲁棒控制器。 结果 单项试验、系统联调及水池试验表明,腹部作业型ROV控制系统具有良好的实时性和可靠性,能够满足UUV回收任务的要求。 结论 该架构和算法对于其他移动机器人、无人机、仿生机器人的控制系统开发均具有参考意义。 -
关键词:
- 腹部作业型水下遥控机器人 /
- 控制系统 /
- PC104 /
- H∞鲁棒控制
Abstract: In order to satisfy all the requirements of Unmanned Underwater Vehicle (UUV) recovery tasks, a new type of abdominal operating Remote Operated Vehicle (ROV) was developed. The abdominal operating ROV is different from the general ROV which works by a manipulator, as it completes the docking and recovery tasks of UUVs with its abdominal operating mechanism. In this paper, the system composition and principles of the abdominal operating ROV are presented. We then propose a framework for a control system in which the integrated industrial reinforced computer acts as a surface monitor unit, while the PC104 embedded industrial computer acts as the underwater master control unit and the other drive boards act as the driver unit. In addition, the dynamics model and a robust H-infinity controller for automatic orientation in the horizontal plane were designed and built. Single tests, system tests and underwater tests show that this control system has good real-time performance and reliability, and it can complete the recovery task of a UUV. The presented structure and algorithm could have reference significance to the control system development of mobile robots, drones, and biomimetic robot.-
Key words:
- abdominal operating ROV /
- control system /
- PC104 /
- H-infinity robust control
-
表 1 腹部作业型ROV总体技术指标
Table 1. The general technical specification
指标 内容 尺寸/mm 700×550×425 重量(空气中)/kg 53.8 工作深度/m 300 电源 直流稳压电源 脐带缆 直径20 mm,破断力441 kN 推进器 2台主推进器,1台侧推进器,2台垂推进器 作业设备 1台电动推杆 导航设备 1台航姿仪(集成磁罗经、深度计、倾角仪) 观通设备 2盏卤素灯,1台含云台彩色摄像机 表 2 通信周期及波特率
Table 2. The communication cycle and baud rate
通信周期/ms 航姿仪/(bifs-1) 主、侧推驱动板/(bifs-1) 水面监控机/(bifs-1) 200 19 200 9 600 9 600 100 19 200 38 400 38 400 表 3 对接及回收试验记录
Table 3. Docking and recovery test
模拟流速/kn 初始艏向夹角 (°) 试验次数 成功次数 成功率/% 0 30 10 10 100 0 60 10 10 100 0 90 10 9 90 1 30 10 10 100 1 60 10 8 80 1 90 10 9 90 -
[1] 徐鹏飞, 马利斌, 王磊."海筝Ⅱ型"遥控自治水下机器人的研制与应用[J].中国科技成果, 2012(20):36-39.XU P F, MA L B, WANG L. Development and applica-tion of"SeaKite-Ⅱ"autonomous and remotely-operat-ed vehicle[J]. China Science and Technology Achieve-ments, 2012(20):36-39(in Chinese). [2] 王瑶, 徐鹏飞, 胡震."海筝Ⅱ型"遥控自治水下机器人的运动控制研究[J].舰船电子工程, 2014, 34(3):56-60. http://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201403016.htmWANG Y, XU P F, HU Z. Motion control of"Seak-ite-Ⅱ "autonomous and remotely-operated vehicle[J]. Ship Electronic Engineering, 2014, 34(3):56-60(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201403016.htm [3] 张艳艳.自主式水下航行器的概念及技术发展--从"蓝鳍金枪鱼-21"谈起[J].中国科技术语, 2014(增刊1):131-133.ZHANG Y Y. The concept and technology development of autonomous underwater vehicle technology-taking "Bluefin-21"as an example[J]. China Terminology, 2014(Supp 1):131-133(in Chinese). [4] PYLE D, GRANGER R, GEOGHEGAN B, et al. Le-veraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs[C]//Proceedings of 2012 Oceans. Hampton Roads, VA:IEEE, 2012:1-8. [5] HARDY T, BARLOW G. Unmanned Underwater Vehi-cle (UUV) deployment and retrieval considerations for submarines[C]//International Naval Engineering Con-ference and Exhibition 2008. Hamburg, Germany:INEC, 2008. [6] RENILSON M. A simplified concept for recovering a UUV to a submarine[J]. Underwater Technology, 2014, 32(3):193-197. doi: 10.3723/ut.32.193 [7] 戴学丰, 边信黔, 施小成.多臂水下机器人对接作业控制[J].哈尔滨工程大学学报, 2001, 22(6):9-11. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200106002.htmDAI X F, BIAN X Q, SHI X C. Control for mating op-eration of multi-arm underwater vehicle[J]. Journal of Harbin Engineering University, 2001, 22(6):9-11(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200106002.htm [8] 于开洋, 徐凤安, 王棣棠, 等."探索者"号无缆水下机器人水下回收系统的设计与应用[J].机器人, 1996, 18(3):179-184. http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR199603008.htmYU K Y, XU F A, WANG D T, et al. Design and ap-plication of the underwater recovering system for the untethered underwater vehicle"Explorer"[J]. Robot, 1996, 18(3):179-184(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR199603008.htm [9] 李翔宇, 刘卫东, 岳丽娜. PC104与VxWorks在深海ROV控制系统的应用[C]//2013中国西部声学学术交流会论文集 (下). 敦煌: 四川省声学学会, 2013.LI X Y, LIU W D, YUE L N. Application of PC104 and VxWorks in deep-sea ROV control system[C]//Acoustics Academic Exchange Conference of Western China. Dunhuang:Acoustics Society of Sichuan Prov-ince, 2013(in Chinese). [10] 杨新平. 遥控自治水下机器人控制技术研究[D]. 北京: 中国舰船研究院, 2012.YANG X P. Control technology research of autono-mous and remotely-operated vehicle[D]. Beijing:China Ship Research and Development Academy, 2012(in Chinese). [11] 王宇鑫. "海螺一型" ROV控制系统结构与艏向控制技术研究[D]. 杭州: 浙江大学, 2012.WANG Y X. Research on the control system structure and heading control technique of"Hello I"ROV[D]. Hangzhou:Zhejiang University, 2012(in Chinese). [12] 翟宇毅. 超小型水下机器人的设计和控制[D]. 上海: 上海大学, 2007.ZHAI Y Y. Structure and control of subminiature un-derwater robot[D]. Shanghai:Shanghai University, 2007(in Chinese). [13] 赵慧, 姜洪洲, 韩俊伟, 等. H∞混合灵敏度控制在液压伺服系统中的应用[J].中国机械工程, 2002, 13(3):195-197.ZHAO H, JIANG H Z, HAI J W, et al. Application of H∞ mixed sensitivity control in hydraulic servo sys-tem[J]. China Mechanical Engineering, 2012, 13(3):195-197(in Chinese). -
2017-2-124_en.pdf
-