留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD的船舶横摇数值模拟与粘性效应分析

罗天 万德成

罗天, 万德成. 基于CFD的船舶横摇数值模拟与粘性效应分析[J]. 中国舰船研究, 2017, 12(2): 1-11, 48. doi: 10.3969/j.issn.1673-3185.2017.02.001
引用本文: 罗天, 万德成. 基于CFD的船舶横摇数值模拟与粘性效应分析[J]. 中国舰船研究, 2017, 12(2): 1-11, 48. doi: 10.3969/j.issn.1673-3185.2017.02.001
Tian LUO, Decheng WAN. Numerical analysis of viscous effect on ship rolling motions based on CFD[J]. Chinese Journal of Ship Research, 2017, 12(2): 1-11, 48. doi: 10.3969/j.issn.1673-3185.2017.02.001
Citation: Tian LUO, Decheng WAN. Numerical analysis of viscous effect on ship rolling motions based on CFD[J]. Chinese Journal of Ship Research, 2017, 12(2): 1-11, 48. doi: 10.3969/j.issn.1673-3185.2017.02.001

基于CFD的船舶横摇数值模拟与粘性效应分析

doi: 10.3969/j.issn.1673-3185.2017.02.001
基金项目: 

国家自然科学基金资助项目 51379125

国家自然科学基金资助项目 51490675

国家自然科学基金资助项目 11432009

国家自然科学基金资助项目 51579145

长江学者奖励计划 T2014099

上海高校东方学者特聘教授岗位跟踪计划 2013022

工信部数值水池创新专项VIV/VIM项目 2016-23/09

详细信息
    作者简介:

    罗天, 女, 1991年生, 硕士生

    通信作者:

    万德成 (通信作者), 男, 1967年生, 博士, 教授

  • 中图分类号: U661.3

Numerical analysis of viscous effect on ship rolling motions based on CFD

知识共享许可协议
基于CFD的船舶横摇数值模拟与粘性效应分析罗天,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  船舶横摇的准确预报对于船舶耐波性、稳性以及操纵性的研究具有十分重要的意义,但船舶横摇运动受流场粘性效应的影响很大,计算中存在较多非线性因素,因而并不适于常用于研究船舶运动的传统势流理论。为解决这一问题,  方法  采用基于OpenFOAM软件开发的naoe-FOAM-SJTU求解器,分别通过欧拉方法和RANS方法对S60船模典型二维横剖面的强迫横摇进行数值模拟,同时,模拟分析DTMB 5512不同三维船模的自由与强迫横摇运动。  结果  在成功将横摇阻尼力矩的不同成分分别计算出来后发现,其中漩涡阻尼所占的比例最大,摩擦阻尼所占的比例最小,而舭龙骨在一定的横摇角度范围内则减小了横摇阻尼力矩。  结论  该结果揭示了横摇参数对船舶横摇运动及横摇阻尼力矩的影响,对准确预报船舶的横摇运动具有重要意义。
  • 图  1  图 1典型的船舶自由衰减横摇曲线

    Figure  1.  Time history curve of rolling angle

    图  2  图 2船舶自由横摇消灭曲线

    Figure  2.  The curve of damping coefficient

    图  3  KCS船模船体视图

    Figure  3.  The KCS ship model

    图  4  KCS半船网格

    Figure  4.  Meshes distribution for KCS ship model

    图  5  S60船模二维横剖面网格

    Figure  5.  Meshes distribution for S60 ship model

    图  6  DTMB 5512船模

    Figure  6.  The DTMB 5512 ship models

    图  7  DTMB 5512船模以及网格

    Figure  7.  Meshes distribution for DTMB 5512 ship model

    图  8  欧拉及RANS方法计算所得稳定波形图比较

    Figure  8.  The comparison of wave pattern between Euler and RANS methods

    图  9  S60横剖面强迫横摇力矩时历曲线

    Figure  9.  Time history curves of forced roll moment with S60 ship model

    图  10  S60横剖面强迫横摇时船体周围涡量分布

    Figure  10.  The vorticity distribution around the S60 ship model

    图  11  粘性流场与非粘性流场中涡量分布图

    Figure  11.  The comparison of vorticity distribution between viscosity and without viscosity

    图  12  波浪阻尼分析图

    Figure  12.  Analysis diagram of the wave damping moment Vorticity

    图  13  DTMB 5512船模自由衰减横摇模拟与试验的对比结果

    Figure  13.  The comparison of free decay roll motions simulation results and the experimental data with DTMB 5512

    图  14  DTMB 5512强迫横摇力矩时历曲线

    Figure  14.  Time history curves of forced roll moment with DTMB 5512 ship model

    图  15  DTMB 5512强迫横摇时船体周围的涡量分布

    Figure  15.  The vorticity distribution around the DTMB 5512 ship model

    图  16  舭龙骨对横摇运动的影响

    Figure  16.  The influence of bilge keel on rolling motion Roll angle

    表  1  KCS船模主尺度

    Table  1.   The main dimensions of KCS ship model

    参数数值
    船长/m7.36
    船宽/m1.030 4
    吃水/m0.345 6
    方形系数0.651
    湿表面积/m29.757
    排水体积/m31.706
    重心位置/m(3.79, 0, -0.113)
    下载: 导出CSV

    表  2  S60船模主尺度

    Table  2.   The main dimensions of S60 ship model

    参数数值
    船宽/m0.237
    吃水/m0.096
    排水体积/m30.017 75
    下载: 导出CSV

    表  3  DTMB 5512船模主尺度

    Table  3.   The main dimensions of DTMB 5512 ship model

    参数数值
    船长/m3.048
    船宽/m0.409
    吃水/m0.132
    湿表面积/m21.397 63
    排水体积/m30.083
    重心位置/m(1.524, 0, 0.03)
    下载: 导出CSV

    表  4  静水阻力系数验证结果

    Table  4.   The comparison between the results of two methods and the experimental data

    Fr试验数据欧拉误差/%RANS误差/%
    0.253.5743.7053.663.5291.26
    0.274.0064.1804.344.0290.58
    下载: 导出CSV

    表  5  S60船模强迫横摇计算方法与网格的验证工况

    Table  5.   The validation conditions of the method and grid for forced roll motion with S60 ship model

    横摇频率/(rad ·s-1)5.274 5
    横摇角度/rad0.15, 0.17, 0.22, 0.25
    流场密度/(kg ·m-2)998.2
    重力加速度/(m ·s-2)9.8
    流体运动粘度/(m ·s-1)1.0x10-6
    下载: 导出CSV

    表  6  S60船模收敛性验证结果

    Table  6.   The validation results of convergence study of S60 ship model

    网格网格量试验得到的${{\hat B}_{{\rm{eq}}}}$${{\hat B}_{{\rm{eq}}}}$误差/%
    网格14×1040.002 60.002 02522.1
    网格27×1040.002 60.002 3788.5
    网格314×1040.002 60.002 4465.9
    下载: 导出CSV

    表  7  横摇阻尼系数验证结果

    Table  7.   The validation results of damping coefficient for forced roll motion

    θ0/radIkeda的试验结果${{\hat B}_{{\rm{eq}}}}$naoe-FOAM-SJTU计算结果${{\hat B}_{{\rm{eq}}}}$误差/%
    0.150.002 0140.002 0030.53
    0.220.002 6390.002 4865.81
    0.250.002 7210.002 8002.90
    下载: 导出CSV

    表  8  S60横剖面强迫横摇计算工况

    Table  8.   The calculation conditions for forced roll motion

    计算工况运动状态横摇频率/(rad ·s-1)来流速度 (Fr)横摇角度/ rad
    2DFR强迫横摇1500.25
    下载: 导出CSV

    表  9  DTMB 5512船模自由衰减横摇收敛性验证计算工况

    Table  9.   The calculation condition of convergence study for free decay roll motion with DTMB 5512 ship model

    计算工况运动状态船型来流速度(Fr初始角度/rad
    BHLS自由衰减不带舭龙骨0.1380.174
    下载: 导出CSV

    表  10  DTMB 5512船模收敛性验证结果

    Table  10.   The validation results of convergence study with DTMB 5512 ship model

    网格网格量试验得到的横摇周期/s横摇周期/s误差/%试验得到的阻尼系数阻尼系数误差/%
    网格197.8x1041.5841.696.70.074 50.065 711.8
    网格2232x1041.5841.654.20.074 50.070 35.6
    网格3646x1041.5841.643.50.074 50.072 13.2
    下载: 导出CSV

    表  11  DTMB 5512船模自由衰减横摇计算工况

    Table  11.   The calculation conditions for free decay roll motion with DTMB 5512 ship mode

    计算工况运动状态船型来流速度(Fr初始角度/rad
    BHLS自由衰减不带舭龙骨0.1380.174
    BHML自由衰减不带舭龙骨0.280.174
    下载: 导出CSV

    表  12  DTMB 5512船模自由衰减横摇验证结果

    Table  12.   12 The validation results for free decay roll motion with DTMB 5512 ship model

    计算工况来流速度 (Fr)试验得到的横摇周期/s横摇周期/s误差/%C
    BHLS0.1381.5841.654.2
    BHML0.2801.5451.624.8
    下载: 导出CSV

    表  13  DTMB 5512船模强迫横摇运动计算工况

    Table  13.   13 The calculation conditions for forced roll motion with DTMB 5512 ship model

    计算工况运动状态船型横摇频率/(rad · s-1)来流速度 (Fr)横摇角度/rad
    BHFR强迫横摇不带舭龙骨6.2800.25
    BKFR强迫横摇带舭龙骨6.2800.25
    下载: 导出CSV
  • [1] CHAKRABARTI S. Empirical calculation of roll damp-ing for ships and barges[J]. Ocean Engineering, 2001, 28(7):915-932. doi: 10.1016/S0029-8018(00)00036-6
    [2] IKEDA Y, HIMENO Y, TANAKA N. On eddy making component of roll damping force on naked hull[J]. Journal of the Society of Naval Architects of Japan, 1977, 142:54-64. https://www.jstage.jst.go.jp/article/jjasnaoe1968/1977/142/1977_142_54/_article
    [3] IKEDA Y, HIMENO Y, TANAKA N. Prediction meth-od for ship roll damping:00405[R]. Osaka:Depart-ment of Naval Architecture, University of Osaka, 1978.
    [4] ALESSANDRINI B, DELHOMMEAU G. A fully cou-pled Navier-Stokes solver for calculation of turbulent incompressible free surface flow past a ship hull[J]. In-ternational Journal for Numerical Methods in Fluids, 1999, 29(2):125-142. doi: 10.1002/(ISSN)1097-0363
    [5] LUCA B, STEFANO B. Influence of viscosity on radia-tion forces:a comparison between monohull, catamaran and SWATH[C]//Proceedings of the Twenty-third In-ternational Offshore and Polar Engineering. Anchorage, Alaska, USA:International Society of Offshore and Po-lar Engineers, 2013.
    [6] MILLER R, GORSKI J, FRY D. Viscous roll predic-tions of a circular cylinder with bilge keels[C]//Pro-ceedings of the 24th Symposium on Naval Hydrodynam-ics. Fukuoka, Japan:NRNAS, 2002.
    [7] WILSON R V, PATERSON E G, STERN F. Unsteady RANS CFD method for naval combatants in waves[C]//Proceedings of the 22nd ONR Symposium on Naval Hy-drodynamics. Washington, DC:[s.n.], 2006.
    [8] YANG C L, ZHU R C, MIAO G P, et al. Numerical sim-ulation of rolling for 3-D ship with forward speed and nonlinear damping analysis[J]. Journal of Hydrody-namics, Series B, 2013, 25(1):148-155. doi: 10.1016/S1001-6058(13)60348-0
    [9] SHEN Z R, CAO H J, YE H X, et al. Manual of CFD solver naoe-FOAM-SJTU:2012SR118110[P]. Shang-hai:Shanghai Jiaotong University, 2012.
    [10] JASAK H, JEMCOV A, ZELJKO T, et al. Open-FOAM:a C++ library for complex physics simulations[C]//International Workshop on Coupled Methods in Numerical Dynamics. Dubrovnik. Croatia:IUC, 2007:1-20.
    [11] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1):40-65. doi: 10.1016/0021-9991(86)90099-9
    [12] 吴建威, 尹崇宏, 万德成.基于三种方法的螺旋桨敞水性能数值预报[J].水动力学研究与进展, 2016, 31(2):177-187. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201602007.htm

    WU J W, YIN C H, WAN D C. Numerical prediction of the propeller open-water performance based on three numerical methods[J]. Chinese Journal of Hy-drodynamics, 2016, 31(2):177-187(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201602007.htm
    [13] SHEN Z R, WAN D C. An irregular wave generating approach based on naoe-FOAM-SJTU solver[J]. Chi-na Ocean Engineering, 2016, 30(2):177-192. doi: 10.1007/s13344-016-0010-1
    [14] 李鹏飞, 万德成, 刘建成.基于致动线模型的风力机尾流场数值模拟[J].水动力学研究与进展, 2016, 31(2):127-134. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201602001.htm

    LI P F, WAN D C, LIU J C. Numerical simulations of wake flows of wind turbine based on actuator line model[J]. Chinese Journal of Hydrodynamics, 2016, 31(2):127-134(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201602001.htm
    [15] 尹崇宏, 吴建威, 万德成.基于IDDES方法的模型尺度和实尺度VLCC阻力预报与流场分析[J].水动力学研究与进展, 2016, 31(3):259-268. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201603001.htm

    YIN C H, WU J W, WAN D C. Model-and full-scale VLCC resistance prediction and flow field analysis based on IDDES method[J]. Chinese Journal of Hy-drodynamics, 2016, 31(3):259-268(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201603001.htm
    [16] CAO H J, WAN D C. Development of multidirectional nonlinear numerical wave tank by naoe-FOAM-SJTU solver[J]. International Journal of Ocean System En-gineering, 2014, 4(1):49-56. doi: 10.5574/IJOSE.2014.4.1.049
    [17] ZHA R S, YE H X, SHEN Z R, et al. Numerical com-putations of resistance of high speed catamaran in calm water[J]. Journal of Hydrodynamics, 2014, 26(6):930-938. https://www.researchgate.net/profile/Ruosi_Zha/publication/271274893_Numerical_computations_of_resistance_of_high_speed_catamaran_in_calm_water/links/564ddc9708aeafc2aab047aa.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [18] SHEN Z R, WAN D C, CARRICA P M. Dynamic over-set grids in OpenFOAM with application to KCS self-propulsion and maneuvering[J]. Ocean Engi-neering, 2015, 108:287-306. doi: 10.1016/j.oceaneng.2015.07.035
    [19] 杨波, 石爱国, 吴明.基于计算流体力学理论的船舶横摇阻尼系数计算[J].中国航海, 2012, 35(3):76-80. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201203019.htm

    YANG B, SHI A G, WU M. Calculation of ship roll damping coefficient based on CFD[J]. Navigation of China, 2012, 35(3):76-80(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201203019.htm
    [20] 李积德.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社, 2007.

    LI J D. Ship seakeeping[M]. Harbin:Harbin Engi-neering University Press, 2007(in Chinese).
    [21] OLIVIERI A, PISTANI F, AVANZINI A, et al. Tow-ing tank experiments of resistance, sinkageand trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model:IIHR-TR-421[R]. Iowa:The University of Iowa, 2001.
    [22] 黄昊, 郭海强, 朱仁传, 等.粘性流中船舶横摇阻尼计算[J].船舶力学, 2008, 12(4):568-573. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200804010.htm

    HUANG H, GUO H Q, ZHU R C, et al. Computations of ship roll damping in viscous flow[J]. Journal of Ship Mechanics, 2008, 12(4):568-573(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200804010.htm
    [23] KORPUS R A, FALZARANO J M. Presiction of vis-cous ship roll damping by unsteady Navier-Stokes techniques[J]. Journal of Offshore Mechanics and Arctic Engineering, 1997, 119:108-113. doi: 10.1115/1.2829050
  • 2017-2-1_en.pdf
  • 加载中
图(16) / 表(13)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  34
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 网络出版日期:  2017-03-13
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回