留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵振动对声传输测量带来的干扰及其避免方法

董鹏 陈志刚 龚强 芦雪松

董鹏, 陈志刚, 龚强, 芦雪松. 纵振动对声传输测量带来的干扰及其避免方法[J]. 中国舰船研究, 2017, 12(1): 116-121. doi: 10.3969/j.issn.1673-3185.2017.01.017
引用本文: 董鹏, 陈志刚, 龚强, 芦雪松. 纵振动对声传输测量带来的干扰及其避免方法[J]. 中国舰船研究, 2017, 12(1): 116-121. doi: 10.3969/j.issn.1673-3185.2017.01.017
DONG Peng, CHEN Zhigang, GONG Qiang, LU Xuesong. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character[J]. Chinese Journal of Ship Research, 2017, 12(1): 116-121. doi: 10.3969/j.issn.1673-3185.2017.01.017
Citation: DONG Peng, CHEN Zhigang, GONG Qiang, LU Xuesong. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character[J]. Chinese Journal of Ship Research, 2017, 12(1): 116-121. doi: 10.3969/j.issn.1673-3185.2017.01.017

纵振动对声传输测量带来的干扰及其避免方法

doi: 10.3969/j.issn.1673-3185.2017.01.017
详细信息
    作者简介:

    董鹏, 男, 1979年生, 硕士, 工程师

    通信作者:

    龚强(通信作者), 男, 1986年生, 硕士, 工程师

  • 中图分类号: U661.44

Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character

知识共享许可协议
纵振动对声传输测量带来的干扰及其避免方法董鹏,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 弹性充液管道在一端固定,另一端受到谐和力作用时自身会产生稳态纵振动。相比于管道自身模态的谐振,弹性管道稳态纵振动的幅度更大,对于声场的影响也更大。对于管道稳态纵振动的研究可以更好地说明充液管道对管口辐射声场的影响。通过等效梁模型的解析计算及与实验结果的对比,验证了等效梁模型用于计算管道稳态纵振动的正确性,同时,提出一种用于隔离管道纵振动的方法,并通过实验验证了其有效性。
  • 图  1  弹性充液管道声传输特性测量系统

    Figure  1.  The system of the sound transmission characteristics measurement for the elastic pipeline filled with fluid

    图  2  刚性连接时,声源1在厚壁钢管一端,管的另一端管口在混响场中的辐射声功率

    Figure  2.  The radiated sound power through the pipeline when one end of the thick pipe is in reverberation field, and the other end is source 1

    图  3  f < 15 kHz时厚壁钢管的声传输特性(声源1)

    Figure  3.  The sound transmission characteristics for elastic pipe with thick wall when f < 15 kHz (source 1)

    图  4  厚壁钢管谐振频率与测量值的误差

    Figure  4.  The deviation of the resonance frequency and measuring value in thick wall pipe

    图  5  刚性连接时,声源2在厚壁钢管一端,管的另一端管口在混响场中的辐射声功率

    Figure  5.  The radiated sound power through the pipeline when one end of the thick pipe is in reverberation field, and the other end is source 2

    图  6  f < 15 kHz时厚壁钢管的声传输特性(声源2)

    Figure  6.  The sound transmission characteristics for elastic pipe with thick wall when f < 15 kHz (source 2)

    图  7  厚壁钢管谐振频率与测量值的误差(声源2)

    Figure  7.  The deviation of the resonance frequency and measuring value in thick wall pipe (source 2)

    图  8  管道与混响箱的连接方式

    Figure  8.  The attended mode between the pipeline and the reverberation tank

    图  9  软连接方式下声源在厚壁管一端,管的另一端管口在混响场中的辐射声功率

    Figure  9.  By soft connecting way, the radiated sound power through the pipeline when one end of the thick pipe in reverberation field, and the other end is source

    表  1  管道截止频率的解析解和测量值

    Table  1.   Analytical solutions and measurement values of the pipeline cutoff frequency

    Analytical solution Measurement value
    Cutoff frequency fn/kHz 24.0 15.0
    下载: 导出CSV

    表  2  厚壁钢管的谐振频率与测量值(声源1)

    Table  2.   The resonance frequencies and measuring values of thick wall pipeline (source 1)

    谐振频率fz/Hz
    阶数 理论值 测量值
    7 3 294 3 280
    9 4 308 4 176
    11 5 321 5 312
    14 6 842 6 704
    15 7 349 7 296
    16 7 856 7 808
    17 8 363 8 496
    19 9 376 9 552
    21 10 390 10 470
    23 11 404 11 220
    24 11 910 11 940
    25 12 417 12 300
    26 12 924 12 860
    27 13 431 13 680
    28 13 938 14 060
    29 14 445 14 370
    下载: 导出CSV

    表  3  厚壁钢管的谐振频率与测量值(声源2)

    Table  3.   The resonance frequencies and measuring values of thick wall pipeline (source 2)

    谐振频率/z/Hz
    阶数 理论值 测量值
    9 4 308 4 160
    15 7 349 7 080
    16 7 856 7 840
    18 8 869 8 616
    19 9 376 9 248
    20 9 883 9 752
    21 10 390 10 470
    23 11 404 11 550
    25 12 417 12 300
    26 12 924 12 810
    27 13 431 13 480
    28 13 938 14 130
    29 14 445 14 420
    下载: 导出CSV
  • [1] RAYLEIGH J. The theory of sound[M]. New York:Dover Publication, 1945.
    [2] MAKRIDES G A, EDELSTEIN W S. Some numerical studies of chaotic motions in tubes conveying fluid[J]. Journal of Sound and Vibration, 1992, 152(3):517-530. doi: 10.1016/0022-460X(92)90484-F
    [3] 张智勇, 沈荣瀛, 王强.充液管道系统的模态分析[J].固体力学学报, 2001, 22(2):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200102004.htm

    ZHANG Z Y, SHEN R Y, WANG Q. The modal analysis of the liquid-filled pipe system[J]. Acta Mechnica Solida Sinica, 2001, 22(2):143-149(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200102004.htm
    [4] 郑继周, 程林, 杜文静.充液弹性管束流固耦合系统模态分析[J].山东大学学报(工学版), 2007, 37(4):55-59. http://www.cqvip.com/qk/90702A/20074/25941801.html

    ZHENG J Z, CHENG L, DU W J. Modal analysis of liquid-filled elastic tube bundles[J]. Journal of Shandong University (Engineering Science), 2007, 37(4):55-59(in Chinese). http://www.cqvip.com/qk/90702A/20074/25941801.html
    [5] 黄益民, 刘伟, 刘永寿, 等.充液管道模态的参数灵敏度及其共振可靠性分析[J].振动与冲击, 2010, 29(1):193-195. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201001046.htm

    HUANG Y M, LIU W, LIU Y S, et al. Parameter sensitivity and resonance reliability of a fluid-filled pipeline[J]. Journal of Vibration and Shock, 2010, 29(1):193-195(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201001046.htm
    [6] 李宝辉, 高行山, 刘永寿, 等.变截面输液管道流固耦合振动特性研究[J].机械科学与技术, 2011, 30(12):2056-2060. http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201112020.htm

    LI B H, GAO H S, LIU Y S, et al. Fluid-structure interaction characteristic analysis of stepped pipe conveying fluid[J]. Mechanical Science and Technology, 2011, 30(12):2056-2060(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201112020.htm
    [7] 曾国华, 孔建益, 李公法, 等.充液管道振动特性研究[J].长江大学学报(自科版), 2006, 3(2):577-579. http://cdmd.cnki.com.cn/Article/CDMD-10248-2010204188.htm

    ZENG G H, KONG J Y, LI G F, et al. Research on vibration characteristics of fluid-filled pipelines[J]. Journal of Yangtze University (Natural Science Edition), 2006, 3(2):577-579(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10248-2010204188.htm
    [8] 金长明, 王赣城, 高康, 等.充液管道的传递矩阵法分析[J].噪声与振动控制, 2009, 29(6):30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200906011.htm

    JIN C M, WANG G C, GAO K, et al. Analysis of fluid-conveying pipe with transfer matrix method[J]. Noise and Vibration Control, 2009, 29(6):30-33(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200906011.htm
    [9] 王海林, 张农, CAO D.充液管道与支撑系统的耦合振动分析[J].机械科学与技术, 2013, 32(12):1825-1828. http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201312024.htm

    WANG H L, ZHANG N, CAO D. Coupled vibration of liquid-filled pipe and support structure system[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12):1825-1828(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201312024.htm
    [10] 芦雪松.弹性充液管道声传输特性研究[D].哈尔滨:哈尔滨工程大学, 2015.

    LU X S. Research on the sound transmission characteristics of water filled pipeline with elastic wall[D]. Harbin:Harbin Engineering University, 2015(in Chinese).
  • 2017-1-116_en.pdf
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  54
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-22
  • 网络出版日期:  2016-12-28
  • 刊出日期:  2017-01-07

目录

    /

    返回文章
    返回